Дупки в небето над Паранал


Прикачената снимка на четирите лазера, всеки с мощност от около 20 вата, с които се създават изкуствени звезди над ВЛТ е направена преди два дни с патетичния ми джобен цифров фотоапарат-сапунерка. Снимка, направена с професионален фотоапарат може да се види тук: https://www.eso.org/public/teles-instr/vlt/vlt-instr/4lgsf/

Отстрани този експеримент наистина прилича на опит за пробиване на дупки в небето. Това е шега, разбира се. Идеята е не да се пробие небето, а да се „запалят“ в него няколко ярки изкуствени звезди, които да се ползват за коригиране на деформациите на вълновия фронт, които атмосферата над нас създава.

Деформация, вълнов фронт…

За какво става дума?

Представете си една звезда. За простота нека да разгледаме само светлината, която звездата излъчва в един безкрайно къс интервал – това ще е къс светлнинен импулс. Какво се случва с него? – Той се разпространява под формата на идеална кръгла сфера, без деформации, с център съвпадащ със центъра на звездата. Повърхността на сферата – която е именно споменатият по-нагоре вълнов фронт – се разширява със скоростта на светлината и продължава да си е идеално сферична (ефектите от разредения материал в междузвездното пространство са пренебрежими), докато не се сблъска с въздуха в … земната атмосфера.

Земната атмосфера, ни по-малко, ни повече, прави възможен живота на Земята, но за нас астрономите тя е досадна пречка. Проблемът ни е, че тя е динамична – в нея има слоеве в различно налягане и температура, въздухът се движи, плътността му се сменя и заедно с всички тези процеси се менят и оптичните му свойства. Спомнете си, как трептят звездите, когато ги наблюдаваме близо до хоризонта или как се мени формата на морското дъно, когато го гледате през плискащата се вода…

Същото се случва и със звездната светлина, когато навлезе в атмосферата: повърхността на идеалната сфера се нагърчва и далечните звезди вече не изглеждат като точки, а като малки дискове. Грубо казано, размерът на тези дискове се нарича астрономическо качество на изображението (seeing), и е важна характеристика на мястото, където се строят обсерваториите. Според това изискване Чилийските Анди, Хаваите и Южният полюс са някои от местата, най-подходящи за строеж на обсерватории.

За съжаление дори и там атмосферата изиграва своята роля, а да се изкарват телескопите в космоса, над нея, е скъпо удоволствие (за справка космическият телескоп Хъбъл струва около 2.5 милиарда долара, а всеки един от четирите ВЛТ – около 80 милиона евро; за поддръжката д не говорим – един ремонтен полет до Хъбъл струваше около половин милиард, а годишната издръжка на 4-те телескопа на Паранал – тук не броя по-малките – е около двадесет пъти по-евтина).

Но как да направим така, че наземните телескопи да „виждат“ толкова ясно, както космическите?

През 1953 година американският астроном Хоръс Бабкок предлага да се използва деформируемо огледало, чиято форма се контролира с компютър толкова бързо, че може да проследява „трептенето“ на звездите и да ги „заковава“ на едно място, така че да изглеждат като точкови източници, а не като дискове, каквито ги прави атмосферата (може да видите как изглежда изображението на една звезда без и с използване на адаптивна оптика: https://en.wikipedia.org/wiki/File:Ao_movie.gif).

Адаптивната оптика не бива да се бърка с активната оптика, която само компенсира деформациите на големите телескопни огледала заради неравномерното им натоварване, включително и от собственото им тегло.

Трябва да минат десетилетия, преди да се появят две технологии, които да направят възможна адаптивната оптика: достатъчно бързи компютри и достатъчно чувствителни детектори (по времето на Бабкок астрономите използват фотографски филми и плаки, които регистрират едва няколко процента от падащите върху тях фотони; съвременните цифрови детектори регистрират 90-95 процента от фотоните).

Първи използват адаптивната оптика американските военно-въздушни сили по времето на Студената война за да наблюдават Съветски спътници (интересна статия за това, но на английски: http://www.npr.org/2013/06/24/190986008/for-sharpest-views-scope-the-sky-with-quick-change-mirrors).

През 90-те години постепенно новата технология става цивилна и започва да се използва в астрономията. Тя обаче има едно изискване – да се наблюдават ярки обекти, чието „трептене“ се проследява и коригира. Уви, интересните звезди не са така ярки като съветските спътници. В началото това ограничава астрономическите приложения на адаптивната оптика до изследване на околностите на ярки звезди – например за да се търсят около тях планети – точно по този метод преди повече от десет години беше наблюдавана за пръв път планета в друга слънчева система именно в нашата обсерватория (https://www.eso.org/public/news/eso0428/).

Не знам на кого принадлежи идеята да се използва лазер, за да се заобиколи това ограничение, но тя се свежда до следното – високо в атмосферата, на около 20-30 километра има слой от натрий. Ако насочим нагоре натриев лазер, светлината излъчена от него ще бъде погълната от натриевите атоми в този слой и ще бъде преизлъчена, но във всички посоки; част от преизлъчената светлина ще се върне към нас и в резултат ще се получи изкуствена звезда.

Четирите лъча от снимката създават точно такива ярки изкуствени звезди. А са четири, за да може да се коригира качеството на астрономическото изображение върху по-голяма площ на небето. Апаратурата все още се изпробва. Една от първите й задачи ще бъде да наблюдава центъра на нашата Галактика, към който в момента се приближава голям газов облак. Той едва ли ще е достатъчен за да направи от Млечния път истинска активна галактика (за щастие), но наблюденията на процесите, които ще съпътстват преминаването му от там със сигурност ще ни кажат нещо интересно за нашия дом, Млечния Път.

sam_2795a

Leave a comment

Filed under astronomy, астрономия, наука, science

„… Щяхме да асфалтираме и лунната пътека… “ Също и всяка зелена площ между блоковете…


Григор Гачев (http://www.gatchev.info/blog/; http://bgf.zavinagi.org/index.php/%D0%93%D1%80%D0%B8%D0%B3%D0%BE%D1%80_%D0%93%D0%B0%D1%87%D0%B5%D0%B2) и съседите му имат нужда от помощ:

http://www.gatchev.info/blog/?p=1991

http://www.gatchev.info/blog/?p=1996

Прочети и предай по-нататък.

Leave a comment

Filed under Bulgaria, България

In Memoriam: Др. Светослав Славчев (1926-2016)


След кратко боледуване, на 90 годишан възраст, си отиде доайенът на българската фантастика д-р Светослав Славчев.

От Wiki-то за Българска фантастика (http://bgf.zavinagi.org/index.php/%D0%A1%D0%B2%D0%B5%D1%82%D0%BE%D1%81%D0%BB%D0%B0%D0%B2_%D0%A1%D0%BB%D0%B0%D0%B2%D1%87%D0%B5%D0%B2):

Роден е през 1926 г. Завършил е медицина, и от 1951 г. до 1958 г. работи като лекар-микробиолог. След това завежда редакцията за научно-популярна литература в издателство „Народна младеж“. От 1967 г. в продължение на 22 години е заместник-главен редактор на списание „Космос“, където създава легендарния образ на инспектор Стрезов.

Първата му книга е „Кръвта на цивилизацията“ (1947 г.) Автор е на повече от 25 книги, 35 телевизионни и радиопиеси, както и на сценарии. Отначало пише научно-популярни книги. С научна фантастика се занимава от 1962 г. Разказите му са преведени в цяла Източна Европа и Япония. Два пъти е носител на награда (Голяма и Първа) на международния конкурс за радиожурналистика „Japan prize” (1966 г. и 1969 г.), на СБП, и на конкурса за криминални разкази „Павел Вежинов”. Вицепрезидент е на Българската секция на AIEP – Международната асоциация на писателите – криминалисти.

По думите на Юри Илков, Генерала: До последните си дни Др. Славчев работеше в списание “8”, издаваше един от вестниците за пенсионери и сътворяваше ежеседмично по две криминални задачи за известния на цяла България инспектор Стрезов. Многократно е гостувал в клуб “Иван Ефремов”. Считаше феновете от клуба за свои приятели, както и ние – него. Остави ни прекрасни фантастични книги и пример за оптимизъм и творческо дълголетие. Сбогом, докторе, жив си в сърцата ни! Поклонението пред тленните му останки ще се състои на 16.11, сряда, от 14.00ч. в Ритуалната зала на Централните софийски гробища.

Ще добавя само, че „Шпага с рубини“ беше една от любимите ми книги.

Leave a comment

Filed under Bulgaria, България, литература, научна фантастика, Literature, science fiction

Награди Еврокон 2016


=== European Grand Master ===
Herbert W. Franke (Austria)

=== HALL OF FAME ===
— Best Author:  Tom Croshill (Latvia)
— Best Artist  Stephan Martinère (France)
— Best Magazine:  Bifrost (France)
— Best Publisher:  Nova – Ediciones B (Spain)
— Best Promoter: James Bacon (Ireland)*, Roberto Quaglia
(Italy)* and Organizers of Archipelacon (Finland & Sweden)*
*A three way tie occured, and all tied promoters were awarded.
— Best Translator:  Andrew Bromfield (United Kingdom)

=== SPIRIT OF DEDICATION AWARDS ===
— Best Author:   Guillem López – (Spain)
— Best Artist:  Kristina Bilota Toxicpanda (Croatia)
— Best Fanzine:  SuperSonic (Spain)
— Best Website:  Risingshadow (Finland)
— Best Dramatic Presentation:  El Ministerio Del Tiempo/The
Ministry of Time (Spain)* and The Shaman (Austria)*
*A tie occurred and both creators are awarded.
— Best creator of children’s ScienceFiction or fantasy books:
Sofia Rhei (Spain)

=== ENCOURAGEMENT AWARDS ===
— Orshulya Farynyak – Ukraine
— Felicidad Martínez – Spain
— Mark E. Pocha – Slovakia
— Alexandru Lamba – Romania
— Jan Hlávka and Jana Vybíralová- Czech Republic
— Maria Gyuzeleva – Bulgaria
— Kuschuj Nepoma/Кусчуй Непома – Russia
— Rui Ramos- Portugal
— Melanie Vogeltanz – Austria
— Juraj Belošević – Croatia
— Maria Boyle- Ireland

Източник: https://esfs.info/2016/11/06/esfs-awards-2016/
Ако не броим окуражителните награди, Източна Европа е представена само от Латвия и Хърватия.😦
Пълен списък с номинациите може да се види тук:
ESFS Nominations 2016

Leave a comment

Filed under book reviews, литература, научна фантастика, Literature, science fiction

59 години от изстрелването на първия изкуствен спътник


Аудио запис на сигнала от първия спътник: https://www.youtube.com/watch?v=r-bQEiklsK8 и документални филми: https://www.youtube.com/watch?v=Et8ur_dl4IA на английски и https://www.youtube.com/watch?v=VxKUtAD4Jgs на руски.

Leave a comment

Filed under История, космонавтика, наука, science

„Вълните усмиряват вятъра“: на 29 и 30.10.2016 в клуб Перото ще се проведе фестивал „Дни на фантастичното“


Организатри: FandomBG (http://fandombg.org/)

Привет!

Обръщаме се към вас от името на инициативата “Фантастичният фендъм – перспективи”, за да ви поканим официално на двудневен фантастичен фестивал, в чиито рамки организираме обща среща с цел да начертаем заедно едно по-продуктивно бъдеще за фантастиката и фендъма в България.

– Цел на срещата –

През последните месеци във фантастичната общност се проведоха задълбочени дискусии на тема развитието на фантастиката у нас. Те ни вдъхновиха да организираме по-мащабен форум, който да положи началото на нова традиция на съвместна работа. На тези форуми предлагаме да се обсъждат възможностите и перспективите за развитие, както и настоящи и бъдещи общи проекти в рамките на фендъма. На първата среща ще се дискутира възможен механизъм за взаимодействие между общностите, правилата на неговото функциониране, начините на представителство на различните общности и фенове вътре в него. В края ѝ ще се проведе гласуване за приемане или отхвърляне на различните предложени варианти.

– Място и формат –

Срещата ще се проведе в рамките на фестивала “Дни на фантастичното” (29 и 30 октомври, в литературен клуб “Перото” в НДК). Фестивалът ще включва разнообразна програма за проявленията на фантастиката в различни медиуми и аспекти и ще започне в 12:30 в събота. Началото на срещата за перспективите пред фантастичния фендъм е от 16:00 часа в събота и ще бъде във формат на структуриран дебат с модератор, Иван Крумов, дългогодишен издател и фен. Главна цел на срещата е да се осигури представителство на всички основни гледни точки и да се потърси обща позиция. Подробна програма на целия фестивал очаквайте на сайта: http://fandombg.org/

– Участие –

За да бъде успешна дискусията за взаимодействието между фантастичните общности, каним всички тях (в това число клубове и инициативи, електронни и хартиени издания за фантастика, фестивали, конкурси, издатели и всички останали фенове) да се свържат с нас, ако желаят да представят своята позиция по темата. Моля да ни я изпратите предварително в писмен вид на info@fandombg.org до 20.10.2016. Всяка гледна точка ще бъде публикувана по желание в списанията “ShadowDance” и “Сборище на трубадури” в седмиците преди фестивала. Приветстваме с благодарност всяко желание за популяризаторско участие от страна и на други фантастични медии.

С поглед към бъдещето, заедно.

Организатори на “Фантастичният фендъм – перспективи” и “Дни на фантастичното”:

Александър Попов (списание ShadowDance)

Валентин Д. Иванов (фен)

Георги Пенчев (списание ShadowDance)

Кристиана Тошева (Фентъзи ЛАРП Център)

Стефан Караманов (През 9 земи)

Юрий Илков – Генерала (клуб Аркадий и Борис Стругацки)

Leave a comment

Filed under Bulgaria, България, литература, научна фантастика, Literature, science fiction

Българска популяризация на науката: есе от Светослав Александров в The Space Rreview за свободния достъп до изображенията от космоса


Една картинка се равнява на хиляда думи, твърди известната английска поговорка. Картинките от космоса сигурно са еквивалентни на още повече думи, защото ни пренасят в светове, които нямаме (и сигурно скоро няма да имаме) възможността да докоснем и усетим със собствените си сетива. Есе за значението на свободния достъп и по-специално за начина, по който се организира този достъп до снимките от космическите станции, написано от българина Светослав Александров, беше публикувано в The Space Rreview: http://thespacereview.com/article/3052/1

За самия Светослав Александров може да научите повече от блога му (https://svetlyoalexandrov.wordpress.com/) и от страницата му във Фейсбук (https://bg-bg.facebook.com/svetlyoalexandrov/).

Забележете, че есето е предизвикало доста оживена дискусия.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Видео-доклади за космическия телескоп „Джеймс Уеб“


Институтът (Space Telescope Science Institute; http://www.stsci.edu/portal/; https://en.wikipedia.org/wiki/Space_Telescope_Science_Institute), който в момента „кара“ космическия телескоп „Хъбъл“, и през Октомври 2018 предстои да „подкара“ космическия телескоп „Джеймс Уеб“ е подготвил няколко доклада за новия телескоп и те са достъпни под формата на видеозаписи и презентации: https://confluence.stsci.edu/display/JWSTLC/JWST+Community+Webinars

Серията е започнала през месец Януари.2016 година, следващият доклад е на 20.Септември.2016. Докладите са на английски. Траят по около един час и нивото е като за професионални астрономи или за напреднали любители. От друга страна това са записи и ако човек не разбира нещо, може да спре записа, да прослуша отново неясната част и дори да потърси превод или обяснение в мрежата. Сред докладчиците са научните ръководители на моята дисертация от университета в Тюсон.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Надолу по спиралата, която води нагоре . Ревю на романа Coming Home („Завръщане в къщи“) от Джак Макдивит


Четете моето представяне на романа в електронното списание „Сборище на трубадури“: http://trubadurs.com/2016/09/02/coming-home-by-jack-mcdevitt-review-20160902/

Leave a comment

Filed under astronomy, Book Review, book reviews, литература, научна фантастика, ревюта на книги, science fiction

Планета около звездата Проксима в съзвездието Центавър: запис на интервю с обяснение на резултата от предаването “Преди всички” на програма „Хоризонт“


Журналистката Ирина Недева отрази откритието на новата планета в предаването “Преди всички” на 25.08.2016. Запис на фрагмента може да се чуе тук: http://bnr.bg/horizont/post/100730227/nai-blizkata-do-nas-ekzoplaneta-e-na-razstoanie-malko-nad-4-svetlinni-godini-i-obikala-okolo-zvezdata-proksima

Leave a comment

Filed under astronomy, астрономия, наука, science

Екзопланета в задния ни двор: проектът „Бледа Червена Точка“ докладва за откритие на планета около звездата Проксима в съзвездието Центавър, най-близката звезда до слънчевата система


Проектът и крилатата фраза: В края на 80-те години на миналия век гениалният популяризатор на астрономията Карл Сейгън предлага да се използва една от космическите станции „Вояджер“, които вече са пресекли орбитите на Юпитер и Сатурн, за да се направи снимка на Земята. Идеята е осъществена в началото на 1990 година (тя може да се види тук: https://en.wikipedia.org/wiki/Pale_Blue_Dot). По-късно Сейгън коментира, че „всяко човешко същество, който някога е живяло, е изживяло живота си“ на тази бледа синя точка.

Създателите на проекта „Бледа червена точка“ (https://palereddot.org/), макар и активни учени-изследователи, също са и популяризатори. Те променят символичната фраза на Сейгън за да отразят правилно червения цвят на най-близката до Слънцето звезда – Проксима. Проксима е най-близкия до Слънчевата система член на система от три звезди, заедно с много по-известната двойна звезда Алфа Центавър А и Б. Проксима е пренебрегната от вниманието на широката публика, вероятно защото не е ярка – макар да е близка до нас, тя е слаба и студена червена звездичка и принадлежи към клас, който астрономите наричат М. За разлика от Алфа Центавър, Проксима е невидима за човешкото око – в оптичния диапазон, в който са чувствителни нашите очи, тя е приблизително сто пъти по-слаба, от най-слабите звезди, който хора с отлично зрение могат да видят.

Проектът „Бледа червена точка“ е замислен като съчетание на научно и популяризаторско начинание: на страницата му е отразен в подробности процесът на правене на наука, от идеята, през наблюденията и тяхната обработка, до подготовката и публикуването на научната статия (https://www.eso.org/public/announcements/ann16002/).

Методът: Проектът „Бледа червена точка“, ръководен от Гуем Англада-Ескуде от Университета Куин Мери в Лондон (http://astro.qmul.ac.uk/directory/g.anglada; https://www.researchgate.net/profile/Guillem_Anglada-Escude), използва добре известния метод на радиалните скорости. С помощта точно на този метод през 1995 година швейцарските астрономи Майор и Коло откриха първата екзопланета около звезда от слънчев тип – 51 Пегас б (https://en.wikipedia.org/wiki/51_Pegasi_b).

Методът не изисква да се „види“ директно една планета, достатъчно е да се „вижда“ звездата. Използва се факта, че звездата и нейната планетата се движат по орбити около общ център на масата, който не съвпада с центъра на звездата. Разбира се, орбитата на звездата е много по-малка от орбитата на планетата. При движението по орбитата си звездата се отдалечава или приближава към нас, при което нейният спектър се измества заради ефекта на Доплер. Съвременните астрономически инструменти са в състояние да регистрират това отместване.

В чисто практически аспект методът се заключава в получаване на множество спектри през достатъчно дълъг интервал от време, който трябва да покрие поне веднъж периода на планетата. После се измерва радиалната скорост на звездата от всеки спектър, и по получената крива на скоростите се определят периода и амплитудата на кривата на радиалната скорост, а от там, по закона на Кеплер, се определя отношението между масите на планетата и на звездата.

Анимация, която добре илюстрира метода може да се види тук:

http://images.google.de/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2F3%2F33%2FESO_-_The_Radial_Velocity_Method_%28by%29.jpg&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDoppler_spectroscopy&h=2094&w=2374&tbnid=gLybRk9ZRxgSuM%3A&docid=KwG2Ep3qqhCr6M&ei=QG69V5DvCIfVsAHnna7oDw&tbm=isch&iact=rc&uact=3&dur=1031&page=1&start=0&ndsp=36&ved=0ahUKEwiQj6nc49nOAhWHKiwKHeeOC_0QMwgcKAAwAA&bih=1076&biw=1379

Откритието: около Проксима има планета, с маса 1.4 пъто по-голяма от масата на Земята. Планетата се движи по орбита с период 11.2 дни и радиус 0.05 астрономически единици (около двадесет пъти по-близо до Проксима, отколкото Земята е до Слънцето; една астрономическа единица е равна на радиуса на земната орбита). Планетата се намира близо до външната граница на обитаемата зона на Проксима и получава от своята звезда около 65% от енергията, която Земята получава от Слънцето; не е изненадващо, че новата планета е по-студена от Земята – температура на повърхността ѝ е около 235 градуса по скалата на Келвин, или четиридесет градуса под нулата по скалата на Целзий. По този параметър новата планета по-скоро прилича на Марс.

Но това не е цялата история – много вероятно планетата има период на денонощно въртене, равен на орбиталния период, т.е. тя винаги е обърната към звездата с една и съща страна (подобно на това как Луната винаги е обърната към Земята с една и съща страна). Следователно, на повърхността на планетата има голяма температурна разлика между страните с вечен ден и с вечна нощ.

Друго усложнение идва от възможността планетата да има атмосфера – ако тя е достатъчно плътна, парниковият ефект е в състояние да повиши температурата на повърхността ѝ над точката на замръзване на водата.

Кривата на радиалната скорост намеква – това е най-подходящата дума – за наличието на още един обект в системата на Проксима, защото след премахването на сигнала от новооткритата планета, остава още един сигнал, под формата на бавна промяна на лъчевата скорост на звездата. Ако наличието на това тяло бъде потвърдено, то ще има период, много по-голям от два месеца (колкото е продулжила последната кампания с HARPS).

Анализ:

– Откриването на планета почти в обитаемата зона на най-близката до Слънцето звезда е епохално откритие. Ако съществуването на планетата се потвърди, тя ще е най-близката до нас екзопланета. Тя има и потенциала да бъде най-близката обитаема планета до нас. Това са две „най“, който няма как да бъдат надминати, просто защото няма друга звезда, по-близка до Слънцето от Проксима. Наличието на планети от земен тип около Слунцето и най-близката до него звезда не е вероятно, освен ако планетите от земен тип не са широко разпространени във Вселената.

– В известен смисъл, откриването на планета около Проксима не е изненада, защото е известно, че на всяка звезда от М клас се пада поне по една планета; проблемът е, че част от М звездите имат по няколко планети, а друга част – нямат никакви (или са толкова малки, че все още не сме ги открили). Също така, като правило планетите в системите на М звездите са малки, не по-големи по маса от Нептун (който е 17 пъти по-тежък от Земята и 19 пъти по-малко масивен от Юпитер), така че и ниската маса на планетата не е изненада.

– Още от сега може да се каже, че планетата вероятно наистина съществува, главно защото сигналът, който тя произвежда, може да се проследи в наблюдения, които покриват почти десетилетие. По-рано той е бил приписван на активността на звездата, но този дълъг период, в който сигналът продължава неизменно да се наблюдава, изключва възможността той да е породен от активност на звездата, защото петната, които са причината да се „откриват“ несъществуващи планети обикновено не са стабилни за толкова дълго време. Нещо повече, паралелно с измерването на радиалната скорост, астрономите от проекта „Бледа червена точка“ са проследили и яркостта на Проксима, защото петната биха довели и до наличието на периодичен сигнал и в яркостта на звездата. Както се очаква за такава студена звезда, яркостта на Проксима се мени, но не със същия период като на новооткритата планета, което е допълнителен аргумент, че новата планета наистина съществува.

Въпроси и отговори:

– Има живот на новооткритата планета? – Не е известно.

Традиционно „обитеаема зона“ около една звезда е зоната, в която равновесните температурни на планетите, които я обикалят, ще са такива, че да позволят наличието на течна вода, т.е. ще са между нула и сто градуса Целзий. За Слънцето, което е много по-горещо и дава на планетите си повече енергия, обитаемата зона е по-далече и се намира приблизително между орбитите на Венера и Марс, но Венера е вече твърде гореща, а Марс е твърде студен. За Проксима в тази зона ще се намират планети с периоди между около 4 и 14 дни, но тези граници са размити, защото тяхното положение зависи не само от енергията, която планетите получават от звездата, а и от размера и масата на самите планети, от вида на повърхността и от характера на атмосферата им. В това отношение фактори са: отражателната способност, т.е. доколко повърхността на планетата отразява и доколко поглъща светлината на звездата; дали има парников ефект – ако Марс беше по-голям, на него би могъл да се поддържа парников ефект и съответно да има условия за наличие на течна вода.

Условията за обитаемост не зависят само от наличието на течна вода. Студени звезди от спектрален клас М като Проксима имат активни атмосфери. Това означава, че повърхността им често е покрита с петна, много повече и много по-големи от слънчевите петна. Петната са свързани с активност с чести избухвания и повишено ултравиолетово и рентгеново излъчване. С други думи, повърхността на планетата е бомбандирана със смъртоносна (за нас) радиация. Подобни обстоятелства правят живот – още веднъж подчертавам, живот като нашия – лошо приспособен за тази планета.

– Можем ли да посетим новооткритата планета? – Теоретично, да. Но да не забравяме, че Проксима е толкова далече от нас, че светлината от нея достига до Слънцето за около 4.2 години. Със съвременните химически ракетни технологии изпращането дори на автоматична станция до там ще изисква 70-80 хиляди години. Проектът Старчип (http://breakthroughinitiatives.org/Initiative/3; https://en.wikipedia.org/wiki/StarChip_%28spacecraft%29), който предвижда пътуване със скорост 15-20% от скоростта на светлината, в случай на успех, може да изпрати автомати до Проксима за 20-30 години. На този етап за пилотирана експедиция е трудно да се правят каквито и да е предположения.

– Може ли да видим новооткритата планета? Какво е това откритие без снимка? – За съжаление планетата е прекалено близо до звездата, за да бъде наблюдавана пряко: при радиус на орбитата 0.05 астрономически единици (една астрономическа единица е равна на радиуса на земната орбита, около 150 милиона километра), се вижда от разстояние от 1.3 парсека (около 4.2 светлинни годни) като ъгъл от около 0.04 ъглови секунди (1 ъглова секунда е равна на 1/3600 част от градуса). Най-добрите от съвременните телескопи могат да разграничат два обекта само ако те са на ъглово разстояние по-голямо от около 0.1 ъглова секунда и то ако яркостите им не са прекалено различни. Обаче следващото поколение инструменти, особено космическите коронографи вероятно ще могат. Нещо повече, много е вероятно откриването на тази планета ще ускори построяването на подобни инструменти, така че не е изключено след едно или две десетилетия да разполагаме със снимки на новооткритата планета.

– Каква е връзката на ЕСО (Европейската Южна Обсерватория; http://www.eso.org/public/) с това откритие? – Проектът „Бледа червена точка“ използва два спектрографа на ЕСО, за да мери радиалната скорост на Проксима: UVES (http://www.eso.org/sci/facilities/paranal/instruments/uves.html) и HARPS (http://www.eso.org/sci/facilities/lasilla/instruments/harps.html). Фотометричните наблюдения използват други, по-малки телескопи в Чили.

– Вие имате ли нещо общо с това откритие? – Не, аз не съм свързан по никакъв начин с проекта „Бледа червена точка“ и не сътруднича с нито един от участниците в него по никакви други проекти; служител съм на ЕСО, но работата ми не е свързана с нито един от използваните инструменти. С други думи, нямам конфликт на интереси.

Материали за пресата:

– съобщение за пресата на ЕСО: http://www.eso.org/public/news/eso1629/?lang и в „детска“ версия: http://www.eso.org/public/news/eso1629/kids/?lang

– научна статия с сп. Nature: http://www.eso.org/public/archives/releases/sciencepapers/eso1629/eso1629a.pdf

– видео с обяснения: https://www.eso.org/public/videos/eso1629a/

Любопитно: Проксима често се появява в научно-фантастичните произведения: https://en.wikipedia.org/wiki/Stars_and_planetary_systems_in_fiction#Proxima_Centauri_.28Alpha_Centauri_C.29

Leave a comment

Filed under astronomy, астрономия, наука, science

Българска фантастика в България: интервю с бургаския фантаст Янчо Чолаков във в. Компас


Въпрос: Защо точно фантастика?
Отговор: Не съм знаел, че е фантастика. Отключвах способностите си да измислям, без да се съобразявам с жанрови канони…

Цялото интервю: http://www.kompasbg.com/interview/item/425-yancho-cholakov-tryabva-da-si-buden-vinagi-za-plyusovete-i-minusite-na-realnostta

Leave a comment

Filed under Bulgaria, България, литература, научна фантастика, Literature, science fiction

ESO Reflex Video Tutorials


Reflex is an environment that provides an easy and flexible way to reduce VLT/VLTI science data using the ESO pipelines. I have prepared some video tutorials how to use those pipelines.

The youtube play list is available here: https://www.youtube.com/channel/UCCq4rxr30ydNyV94OWmLrMA

More about Reflex: https://www.eso.org/sci/software/reflex/

Leave a comment

Filed under astronomy, астрономия, наука, science

Българска фантастика в чужбина: Янчо Чолаков спечели годишната награда за хумористичен фантастичен разказ на списание “Уральский следопыт”!


Поздрави на Янчо! Ето какво написа самият автор:

Обявиха годишните награди на “Уральский следопыт” в категориите за фантастичен разказ. По този повод искам да благодаря на всички онези, знайни и незнайни, които подкрепиха моята кандидатура. Но най-вече на Наско Славов, който предложи на редакцията текста за печат, както и на Радослав Филипов за безпрецедентната разгласа. И на Борис Долинго, който ми гласува доверие. Зная, че Христо Граматиков щеше да се зарадва много, без неговия превод това не би било възможно. Посвещавам тази награда на българския фендъм, който има нужда от малко повече (обосновано) самочувствие и на първо време – от обединение. От опит зная, че наградите – понатрупал съм ги доста вече, – бързо се забравят и едно произведение остава само тогава, когато – клише е, но е вярно – успее да издраска сърцето.

Всички резултати по категории:

– Законы вселенной (Научная фантастика): Тутуров Фома – Москва, Автозагрузка

– Координаты чудес (Фэнтези, мистика): Белоусова Екатерина – Прах

– Повод для улыбки (Юмористическая фантастика): Чолаков Янчо – Как боги встретились с…

Leave a comment

Filed under Bulgaria, България, Литературен конкурс, литература, научна фантастика, Literature, science fiction

Българска фантастика в чужбина: „Репликация“, разказ от Георги Малинов е публикуван в израелското рускоезично списание „Млечен път“, No. 2, 2016


Поздрави на Жоро Малинов!

Разказът може да се види тук: http://newmilkyway.com/show.html?mode=r&pr=118&idp=7

Начална страница на списанието: http://newmilkyway.com/

Страница на Георги Малинов в уикито за Българска фантастика: http://bgf.zavinagi.org/index.php/%D0%93%D0%B5%D0%BE%D1%80%D0%B3%D0%B8_%D0%9C%D0%B0%D0%BB%D0%B8%D0%BD%D0%BE%D0%B2

Leave a comment

Filed under Bulgaria, България, литература, научна фантастика, Literature, science fiction, Uncategorized

Кого отличихте в Националните фантастични награди: Първенците ще представят България на Еврокон 2016


Излязоха резултатите от вторите Национални фантастични награди – гласуване, отворено към всички ценители на фантастичното.

Инициативата е плод от усилията на над 15 общности, клубове и организации – обединение, което няма аналог в историята ни след 1989 г. В първия ѝ етап българските почитатели на фантастиката предложиха 130 номинации в 24 категории. Пълният списък включва кратки представяния за всяка номинация и показва колко жива и разнолика е фантастичната сцена в България.

Тази година гласовете на публиката определиха следните първи места:

  • Любим писател: Любомир Николов – Нарви

  • Любимо издателство: Аргус

  • Любим преводач: Светлана Комогорова – Комата

  • Любим превод за 2015 г.: „Последният еднорог“ – Питър С. Бийгъл (превод: Калин М. Ненов, Владимир Полеганов и Желяна Пеева)

  • Любима книга за 2015 г.: „Зелени разкази (ама наистина)“ – антология

  • Любима книга-игра за 2015 г.: „Ной“ – Коен Ливингстън

  • Любим художник: Петър Станимиров

  • Любим художник за 2015 г.: Петър Станимиров

  • Любим комикс: Bion – художник и сценарист Сатанасов

  • Любим комикс за 2015 г.: DragonLast – художник и сценарист Сатанасов

  • Любима фантастична творба за деца за 2015 г.: „Плюм речното духче / Sploosh the Nix“ – автор и художник Росана Новаковска

  • Любим дебют за 2015 г.: „Нощта на скорпиона“ – Мария Гюзелева

  • Любима компютърна игра за 2015 г.: Victor Vran – гейм-дизайнери Боян Иванов и Боян Спасов

  • Любимо визуално представление за 2015 г.: „Как да надебелеем здравословно“ – режисьор Кеворк Асланян, сценаристи Кеворк Асланян и Георги Мерджанов

  • Любимо ролево/ЛАРП събитие за 2015 г.: Сталкер VII: Чужда земя

  • Любимо списание: ФЕП (Фантастика, евристика, прогностика)

  • Любимо списание за 2015 г.: няма номинации

  • Любим фензин: „Списание за книги-игри“

  • Любим фензин за 2015 г „Тера фантастика“

  • Любим сайт: ShadowDancе

  • Любим сайт за 2015 г.: Сборище на трубадури

  • Любим популяризатор: Григор Гачев

  • Любим популяризатор за 2015 г.: Кристиана Тошева (и екипът на Фентъзи ЛАРП Център)

  • Гранд-майстор на фантастиката: Любомир Николов – Нарви

Част от първенците ще представят България на Еврокон 2016 – конвент на любителите на фантастичното от цяла Европа, който отличава най-обичаните европейски творци и се провежда ежегодно в различен европейски град. Тази година негов домакин ще бъде Барселона от 4 до 6 ноември.

Организатори на Националните фантастични награди за 2015 г. са Фентъзи ЛАРП Център, Човешката библиотека, knigi-igri.bg, ИКФЕП „Иван Ефремов“, Дружество на българските фантасти „Тера Фантазия“, SciFi.bg, ShadowDance, „През 9 земи“, българските ЛАРП общности, Сборище на трубадури, клуб „Терра Фантазия“, Клуб по фентъзи и фантастика към ФМИ, организаторите на „Златен кан“, клуб „Светлини сред сенките“.

Пълния списък с отличията за първо, второ и трето място във всяка категория потърсете на: http://nfnagradi.net/results-2016/

Leave a comment

Filed under Book Review, book reviews, България, Литературен конкурс, литература, научна фантастика, Literature, science fiction

Българска (не-)фантастика в чужбина: „Когато силуетите не свирят на тромпет“, криминален разказ от бургаския фантаст Янчо Чолаков във вестник „България“


Честито на Янчо! Разказът може да се прочете на стр. 30 в: https://issuu.com/lenakirk/docs/bulgaria_25_16-web/1

Leave a comment

Filed under Book Review, book reviews, Bulgaria, България, Литературен конкурс, литература, научна фантастика, Literature, science fiction

Гласувайте във втория етап на вторите Национални фантастични награди! До 21 юни 2016 (включително)!


Страница на гласуването: http://nfnagradi.net/voting-2/

Резултатите от първия етап може да се видят на: http://nfnagradi.net/voting-1-results/

Описания на номинациите: http://nfnagradi.net/nominations-2016-info/

Leave a comment

Filed under Bulgaria, България, Литературен конкурс, литература, научна фантастика, Literature, science fiction

Астрономия, статия на деня: космически телескопи за жълти стотинки – откритията на космическите телескопи МОСТ и БРИТЕ и ползата от развитието на космически технологии


Трудно е да се свържат жълтите стотинки с космическите телескопи. За сравнение, през последното десетилетие годишният бюджет на Европейската Южна обсерватория (ЕСО), където работя, се колебае около 120-140 милиона евро. За 20 години експлоатация на космическия телескоп Хъбъл (диаметър на главното огледало 2.4 метра) са похарчени около 10 милиарда долара, което прави около 500 милиона долара на година. Оценките за следващия голям проект на НАСА – космическият телескоп Джеймс Уеб (диаметър на главното огледало 6.5 метра), който се очаква да работи в продължение на 5 или 10години – са около 5-6 милиарда долара (тези оценки могат да се видят тук: http://www.nasa.gov/pdf/499224main_JWST-ICRP_Report-FINAL.pdf). Даже сравнително малкият инфрачервен космически телескоп Спитцер (диаметър на главното огледало 0.6 метра) се нуждаеше от около 700 милиона (http://www.spitzer.caltech.edu/info/107-Innovations).

Даже без да взимаме под внимание, че ЕСО има четири 8-метрови телескопа, три 4-метрови и множество други по-малки (и повечето телескопи имат по няколко инструмента), правенето на астрономия от космоса е на порядъци по-евтини, отколкото от Земята.

И все пак космическата астрономия се развива, макар че разходите за нея са значителни. Причината е проста – от космоса може да се получат наблюдения, които не са възможни с наземни телескопи. Първо, земната атмосферата е непрозрачна – тя почти напълно поглъща фотоните с високи енергии, в ултравиолетовата и в инфрачервената области – по тази причина рентгеновите наблюдения и наблюденията в гама лъчите се правят почти изключително от космоса (https://en.wikipedia.org/wiki/XMM-Newton, https://en.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory, https://en.wikipedia.org/wiki/Swift_Gamma-Ray_Burst_Mission, за по-пълен списък: https://en.wikipedia.org/wiki/List_of_space_telescopes; този списък не включва инструментите, изстрелвани със суб-орбитални ракети но за тях – друг път).

Второ, земната атмосфера е нестабилна. Въздухът се движи, променя се налягането му и заедно с това – оптичните му свойства. Това води до „размиване“ на звездните изображения, които вместо почти идеални точки, се превръщат в дискове. Разбира се, размерът на тези дискове е незабележими за човешкото око, но той е пагубен за астрономическите инструменти, защото намалява разделителната им способност – най-просто казано, способността им да разделят две близко разположени звезди. Проблемът е особено актуален когато се търсят планети около ярки звезди, защото звездното изображение става толкова голямо, че „скрива“ планетите от наблюдателите.

Трето, в земната атмосфера има облаци. Облаците се състоят от водни пари, които имат свойството да поглъщат светлината много добре и тяхната „променливост“ превръща получаването на точна фотометрия от наземните телескопи доста трудна задача. При хубави условия – безоблачна нощ, ниска влажност и липса на Луна (която има лошия навик да повдига фоновото излъчване и да увеличава шума на измерванията), за ярки обекти и с прилично голям телескоп е сравнително лесно да се получи фотометрия с точност от няколко процента. Тук използвам понятията ярки обекти и прилично голям телескоп съвсем условно. Проблемът е, че за много наблюдателни задачи такава точност не е достатъчна – например пасажите (още известни като транзити) на екзопланетите обикновено имат дълбочина под един процент и много малко от тях са в орбита около „условно“ ярки звезди, дори за най-големите съвременни телескопи. Нещо повече, наистина интересните планети, с диаметър подобен на земния, предизвикват пасажи с дълбочина десети или дори стотни от процента. До някаква степен може да помогнат така наречените относителни измервания, когато се наблюдават едновременно обектът на изследване и звезда (или по-добре много звезди) за сравнение (два примера от работи на един мой аспирант, Клаудио Кацерес: http://adsabs.harvard.edu/abs/2009A%26A…507..481C, http://adsabs.harvard.edu/abs/2011A%26A…530A…5C, но и това решение не работи винаги, защото звездата за сравнение трябва да е почти толкова ярка, колкото обекта, а ярките звезди на небето са малко и обикновено са разположени далече една от друга и рядко попадат в полето на съвременните инструменти. За телескоп в космоса няма нужда от звезди за сравнение, нито от постоянни наблюдения на „стандартни“ звезди за да се калибрира сигналът. Нещо повече, обикновено космическите телескопи се калибрират на земята преди изстрелването им, и след това само се проверява дали чувствителността им съответствува на определената преди старта (съвсем без стандарти и калибриране не може, защото трябва да се следи за деградацията на огледалата и детекторите в суровите космически условия). Демонстрация на възможностите да се получава свръхточна фотометрия от космоса са телескопите Коро (https://en.wikipedia.org/wiki/COROT) и Кеплер (https://en.wikipedia.org/wiki/Kepler_%28spacecraft%29).

* * *

Наред с големи проекти, които изброявах до сега, съществуват и множество малки космически телескопи, за които рядко се говори. Причините за малката им „популярност“ са комплексни – в някой аспекти те успешно се конкурират с „големите“, но създателите им неизбежно са приели конструктивни решения за да намалят себестойността им, което в повечето случаи ги е превърнало в „нишови“ инструменти, подходящи само за адресирането на определени специфични наблюдателни задачи.

МОСТ (MOST; Microgravity and Oscillation of Stars) беше изстрелян на 30.юни.2003 година. Той представлява „куфар“ с размери 65 на 65 на 30 сантиметра, тежи 53 килограма и носи на борда си 15-сантиметров оптичен телескоп. Както се вижда от името, първоначалната задача е била да се изследва вътрешната структура на звездите с методите на астросеизмологията (https://en.wikipedia.org/wiki/Asteroseismology) – микро-променливост на звездите, породена от акустични осцилации в недрата им.

Обаче, не изненадващо, най-цитираните резултати са свързани с изследването на планети около други звезди. Джейсън Роу и съавторите му (списъкът включва и българина Димитър Съселов, професор в Харвард) наблюдават в продължение на 58 дни звездата HD 209458. Тя е от спектрален клас GoV и има ефективна температура около 6000 градуса по скалата на Келвин – не много различна от Слънчевата. В орбита с период около 3.5 дни около нея обикаля „горещ Юпитер“ (https://en.wikipedia.org/wiki/HD_209458_b). Роу и колеги му са се опитали да регистрират отразената светлина на планетата, но неуспешно (http://adsabs.harvard.edu/abs/2006ApJ…646.1241R и http://adsabs.harvard.edu/abs/2008ApJ…689.1345R). Това поставя горна граница на албедото (отражателна способност) на планетата и означава, че тя не е покрита с облаци, които да отразяват светлината на тамошното слънце. Такива отразяващи облаци в Слънчевата система имат Земята и Венера.

МОСТ има малко полезрение, което е именно един от тези компромиси, необходими за да се намали стройността на спътника. Това ограничава приложението му до изследване на единични обекти, какъвто е случая в HD 209458. Подобна беше стратегията на Джоуша Уин и неговите колеги, които през 2011 година обявиха (http://adsabs.harvard.edu/abs/2011ApJ…737L..18W), че петата и най-вътрешна планета в системата на звездата 55 Cnc има транзити. До тогава беше известна само масата на планетата – от измервания на радиални скорости, около 8.6 земни маси, а транзитите позволиха да се измери радиусът ѝ – два пъти по-голям от земния. Звездата 55 Cnc е от шеста звездна величина и човек със средно добро зрение може да я види с невъоръжено око (с други думи, без да използва телескоп или дори бинокъл). Това измерване постави планета в класа, наречен свръх-земи, защото тези обекти имат малко по-големите маси и размери от земните. Теоретичните модели предсказват за повечето от тях структура, подобна по-скоро на газови планети, затова някой предпочитат да ги наричат мини-Нептун.

Себестойността на МОСТ е около 7 милиона евро, телескопът продължава да се използва вече тринадесет години. За сравнение, обществената поръчка за 75 автомобила за Народното събрание от 2012 година е около 4.4 милиона лева, но за срок от само три години(http://www.dnevnik.bg/bulgaria/2012/09/13/1904108_narodnoto_subranie_obiavi_poruchka_za_tochno_opredelen/).

През 2014 година, когато канадското правителство реши да намали финансирането за наука, учените, които го използват се канеха да прибягнат до crowdfunding, за да продължат мисията му. В момента МОСТ се управлява от частната фирма MSCI (http://www.mscinc.ca/products/most.html), от името на Канадската Космическа Агенция. MSCI продължава научните изследвания с него, но също предлага и наблюдения на комерсиална основа.

БРИТЕ (BRITE; Bright Target Explore; https://en.wikipedia.org/wiki/BRITE) също е канадска обсерватория (с участието на Полша и Австрия; полската страница за БРИТЕ е тук: http://www.brite-pl.pl/index_en.html), но за разлика от МОСТ това не е един спътник, а цели шест наноспътника, кубове с дължина на страната 20 сантиметра и тегло 10 килограма. Апертурата на телескопите е само 3 сантиметра – това е компромисът при този проект, – но пък телескопите са много и могат да се използват паралелни за наблюдения на различни обекти. Към настоящия момент пет от шест изстреляни БРИТЕ наноспътника са в работно състояния. Не на последно място е важно, че ползрението на спътниците е 24 градуса, което позволява да се наблюдават едновременно множество ярки звезди. Статия с подробно техническо описание на проекта може да се види тук: http://cdsads.u-strasbg.fr/cgi-bin/bib_query?2014PASP..126..573 и стойността на всеки един от наноспътниците е около 1-2 милиона долара (http://thevarsity.ca/2013/03/10/u-of-t-launches-nano-satellites-into-orbit/).

Няколко мои колеги от Есо, сред които Дитрих Бааде използваха БРИТЕ като част от голяма колаборация за да изследват загубата на маса при Бе звездите (https://en.wikipedia.org/wiki/Be_star). Това са горещи звезди, които се въртят толкова бързо, че центробежната сила на екватора им почти се изравнява с гравитацията и част от звездното вещество „отлита“ в космоса и образува газов диск около звездата. Тези звезди се разпознават лесно по силните емисионни линии в спектрите им. Наблюденията показват, че прехвърлянето на материал от звездата към диска не става с постоянна скорост, а е модулирано от пулсации на Бе звездите, което на свой ред води до активност в диска. Това е само една от първие три статии, използващи наблюдателен материал от БРИТЕ. Сигурен съм, че ни предстои да видим още важни резултати от този проект.

* * *

Надявам се, че успях да покажа – малкит и евтини космически телескопи имат своята ниша, специално в наблюденията на ярки звезди и в продължителните кампании, покриващи много седмици или дори месец. Обаче ползата от тях не се изчерпва до тук.

Нека да си спомним за спускаемия апарат Бийгъл-2 (https://en.wikipedia.org/wiki/Beagle_2), изпратен към Марс заедно с космическата станция Марс експрес, той трябваше да кацне малко преди Коледа на 2003 година. Апаратът се отдели от станцията, спусна се в атмосферата и изчезна. Разследването на ЕСА стигна до заключението, че проектът е било доста „суров“, и раязкри. Наиситна, в началото на 2015 годна Бийгъл-2 беше открит върху фотографии на марсианската повърхност и стана ясно, че той все пак е кацнал, но една от слънчевите батерии не се е отворила, блокирайки възможността за радиоконтакт със Земята.

Проблемите с Бийгъл-2 издават липсата на опит и бих казал, на „зрялост“ в космическата Британската космическа индустрия, която навремето се отказа от създаването на собствени носител; рязък контраст с Японската космическа агенция, която трупа опит с годините изпращайки една след друга амбициозни мисии като Хаябуса (https://en.wikipedia.org/wiki/Hayabusa) например.

Малките космически телескопи са именно школата, която създава кадрите и инфраструктурата, необходими за по-смели космически проекти. Разбира се, натрупаният опит в създаването и управлението на спътници не се ограничава до телескопи, както и обучението на студентите по астрономия не означава, че те непременно трябва да станат астрономи – уменията да решават проблеми, да намират отговори чрез изследователски методи могат да се приложат навсякъде и са един от начините науката да върне на обществото инвестициите, които са направени за нея.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Астрономия, статия на деня: когато писателите фантасти се хванат за калкулаторите или може ли слънцето никога да не залязва над Татуин


В заглавието би трябвало да заменя калкулаторите с логаричтмични линийки, защото някой от статиите, който ще спомена по-нататък са доста стари.

Към размисли на тази тема ме подтикна една статия, която се появи през октомври миналата година на Ливърморския сървер за препринти от моя любим писател, австралиецът Грег Игън: http://arxiv.org/abs/1510.05345

Статията е изпратена в Astrophysical Journal, америакнско научно списание, което заедно с другото американски списание Astronomical Journal (то е ориентирано повече към чисто наблюдателни изследвания), с английското Monthly Notices of the Royal Astronomical Sosciety и с общоевропейското Astronomy and Astrophysics са местата където астрономите най-често публикуват статиите с резултатите си.

Все още статията на Игън не е приета, защото не е излязла на страницата на самото списание, но съдейски по това, че на сървера в края на май се появи трета коригирана версия, процесът ѝ на рецензиране е доста напреднал.

Игън не е чужд на научните публикации. По образование той е математик, има статии по изчислителни методи и нищо чудно, че тук става дума за теоретична работа.

Всичко започва малко по-рано – през 2015 година амерканският професор Юджин Окс, професор по физика в Университате в Оубърн публикува статия, в която предалага нов вид орбити в системите на двойни звезди.

* * *

Традиционно се смята, че ако звездите са достатъчно далече, около всяка от тях може да има стабилни планети. Точно такава е планетната система около главната звезда на двойната система Гама Цефей. Интересно, че първи докладваха за наличието на планети около тази звезда няколко канадски учени още през далечната 1988 година (Кябмъл, Уокър и Янг: http://adsabs.harvard.edu/abs/1988ApJ…331..902C; пдф-ът е публично достъпен), но резултатът им беше подложен на съмнение, и така откриватели на първата екзопланета станаха швейцарсите Майор и Коло през 1995 годна (http://adsabs.harvard.edu/abs/1995Natur.378..355M).

Вторият известен тип планетни орбити в двойните системи обикалят около центъра на масите на двете звезди и отново изминава време, преди първата подобна система да бъде призната от астрономическата общност – през 1993 година Торсет, Арзуманян и Теълър публликуваха статия (http://adsabs.harvard.edu/abs/1993ApJ…412L..33T), в която описват планета с маса около 30% от масата на земята, обикаляща около двойка състояща се от пулсар и бяло джудже. Към настоящия момент са известни двадесетина подобни планети (https://en.wikipedia.org/wiki/Circumbinary_planet), включително и около двойни звезди от глваната последователност.

* * *

Окс предлага съвършенно нов вид орбита в която планетата обикаля не около звездите, а около оста, която ги свързва. Представете си гира, в която топките са двете звезди. Дръжката е въпросната ост помежду им и планетата ще се движи по орбита, лежаща в развина перпендикулярна на дръжката.

Разбира се, аз тук опростявам. Статията на Окс се състои от дванадесет страници с формули, тук-там разредени с някоя фигура. Рашението е аналичитно, което не е за чудене, защото Окс е от руски произход (и вероятно първото му име всъщтност е Евгений, а не Юджин), а руската физика е известна с добрата си аналитична школа – бившите студенти по физика никога няма да забравят многотомника на Ландау и Лифшиц. Без да се задълбочавам с подробности само ще поясня, че орбитата всъщюност ще бъде конично сечение, например елипса, и равнината ѝ може да осцилира около точката на Лагранж между двете звезди. За любопитните – на Фигура 3 в статията на Окс има скица, която дава по-добра представа.

Наличието да подобни стабилни орбити е интересно по няколко причини. Първо, то има потенциала да разшири жилищната площ във Вселената, защото около 1/3 от звездите принадлежат на двойни, тройни и други системи с по-висока кратност. Второ, подобни системи са интересни с по-лесната си наблюдаемост – има голяма вероятност те да имат транзити (известни още като пасажи). Като истински теоретик Окс изследва и възможността планетите да бъдат открити по излъчваните гравитационни вълни. Гравитационни вълни излъчва и Земята докато обикаля около Слънцето, но планети на новопредсказаните орбити можат да имат много по-къса година от земната, и следователно ще излъчват с много по-голяма интензивност

* * *.

Татуин не обикаля около оста, свързваща двете звезди, който залязваха пред Люк, защото на плнетите, предсказани от Окс, двете звезди никога няма да се виждат едновременно, те винаги ще бъдат от противоположните страни на планетата, от което следва, че на нея никога няма да има нощ. През Викторианската епоха са казвали, че слънцето никога не залязва над Британската империа, просто защото тя е толкова голяма, че има територии на противоположните части на Земята. Слънцето (по-скоро едно от слънцата) никога няма да залязва над която и да е държава, намираща се Окс-овите планети.

Във фантастиката са описани планети, намиращи се в системите на двойни и по-високократни звездни системи. Един съвем скорошен пример е трилогията „Проблемът на трите тела“ (https://en.wikipedia.org/wiki/The_Three-Body_Problem; първият том спечели наградата Хюго за най-добър роман през 2015 година) от китайския автор Ли Ксицин. Там орбитата на планетата е хаотична, кратки епохи на „обитаемост“ се редуват с продължителни периоди, през които планетата е или леден хладилник, или огрнена фурна. Местните форми на живот се е приспособили, развивайки способност да се обезводняват и хибернират в този вид през периодите на необитаемост.

* * *

Статията на Игън е дълга само три странички – доста по-малко от обичайното. Тезата ѝ е описана кратко и ясно в абстракта: орбитите, предложени от Окс са нестабилни, ако се отчете орбиталното движение на двойната звезда. За да е стабилна орбитата, ъгловият момент трябва да се запазва; Окс допуска това, разглеждайки кръгова планетна орбита, точно перпендикулярна на линията, свързваща двете звезди, а Еган проверява това допускане и демонстрира, че ъгловият момент ще се мени с период, развен на периода на въртене на двойната звезда около общият ѝ център на масите.

Аз съм обикновен наблюдател, а не специалист по звездна динамика, статията все още не е приета за публикация, така че ще изчакам да преди да съдя кой е прав – очевидно проблемът не нетривиален и е лесно да се пропусне някой фин ефект. Ако Игън е прав, може само да съжаляваме, че предложените от Окс планетни системи не съществуват.

* * *

За мен е интересно друго – как би се образувала подобна система и дали изобщо е възможно. Проблемът е, че практически (запомнете тази уговорка, по-надолу ще се върна към нея) всички звездни системи, който познаваме до сега – от планетните системи и двойните звезди до галактиките, са се образували от диск – протопланетен, протозвезден или протогалактичен. Това е свързано с процеса на свиване на облаците материал, от които тези системи се образуват и с факта, че колапсът никога не е сферично симетричен. Достатъчно е облакът да има съвсем малко въртене преди началото на свиването, за да създаде то центробежна сила, която да се противопостави на свиването. При това въртенето се засилва в процеса на свиване – също както танцуващите на лед се завъртат по-бързо ако свият ръцете си, заради запазването на въртящия момент.

Центробежната сила породена от въртенето се противопоставя на свиването само в равината на въртене, докато по оста на въртене свиването протича без проблем. В резултатът се образува диск. По тази причина орбитите на планетите в повечето планетни системи лежат приблизително в една равнина и повечето галактики имат дискове. Освен въртенето, магнитните полета и излъчването на вече образувани звезди мога да възпрепятстват свиването, тук разглеждам опростена картина.

Сега да се върнем към уговорката, която направих по-нагоре. Наистина, орбитите на повечето планети лежат в една равнина, но не всички, орбитата на планетата джудже Седна например е наклонена на около 12 градуса спрямо земната орбита. А при галактиките има обекти, чиято форма няма нищо общо с диск – например елиптичните галактики. И в двата случая отговрни за тези „отклонения“ са процеси на взаимодействие – между Седна и гигантските планети; между галактиките, от чийто сливане са са образували самите елиптични галактики.

Нещо подобно е необходимо за образуването на планетните ситема от типа, предсказан от Окс: логично е да се предположи, че равнината на орбитата на двойите звезди, които са двата най-масивни обекта в системата, ще съвпада с екваториялната равина на протозвездния диск, от който са се образували те. А орбитата на планетата е перпендикулярна на тази равнина и е мното трудно да си представим как ще се образува подобна планетна система и от къде ще се вземе моментът, който ще движи планетата по орбитата ѝ. Едиственото обяснение е взаимодействие с друга ситема, точно ориентирано в равнина, перпендикулярна на орботалана равнина на двойната звезда, а такова съвпадение е малко вероятно.

* * *

Това е аргумент за ниската вероятност да възникнат подобни сиситеми, а не аргумент за нестабилността им, какъвто привежда Игън. Моят аргумент има наблюдателно отвърждение – защото същият механизъм на образване работи при галактиките и там той е също толкова рядък: известни са галактики с две перпендикуларни структури (те се наричат галактики с полярен кръг: https://en.wikipedia.org/wiki/Polar-ring_galaxy) и честотата им при галактиките, които със сигурност са претърпели взаимодействия наскоро (по вселенски мащаби, разбира се; такива галактики сами по себе си се срещат рядко) се измерва с няколко процента (атлас и каталог на подобни галактики може да се види тук: http://adsabs.harvard.edu/abs/2011MNRAS.418..244M).

* * *

Игън не е единственият фантаст, оставил името си сред авторите на научни статии. Но обикновено пътят води в обратна посока – учени, прописват фантастика. Примерите са много, започвайки от Камил Фламарион (https://en.wikipedia.org/wiki/Camille_Flammarion) и стигайки до Алистър Рейнолдс (https://en.wikipedia.org/wiki/Alastair_Reynolds). Специално ще отбележа Борис Стргацки, който е работил известно време в Пулковската обсерватория, преди да стане професионален писател. Днес в астрономическите бази от публикации може да се намери една едиствена негова статия за асиметричната форма на планетите гиганти в Слъневата система (http://adsabs.harvard.edu/abs/1962IzPul..23..144P; това е статията, която навярно е написана с помощта логаричтмична линийка, а не на калкулатор).

Случаят с Игън е различен – той идва извън астрономията, макар да е програмист и специалист по приложна математика – и дава повод да си задам един друг въпрос: дали „външен“ човек може да произвежда научни резултати или специализацията в науката е достигнала ниво, което изключва подобна възможност. За това – друг път. А дали статията му ще бъде приета в списанието, ще покаже бъдещето.

Leave a comment

Filed under astronomy, астрономия, наука, science