Tag Archives: astronomy

Дупки в небето над Паранал


Прикачената снимка на четирите лазера, всеки с мощност от около 20 вата, с които се създават изкуствени звезди над ВЛТ е направена преди два дни с патетичния ми джобен цифров фотоапарат-сапунерка. Снимка, направена с професионален фотоапарат може да се види тук: https://www.eso.org/public/teles-instr/vlt/vlt-instr/4lgsf/

Отстрани този експеримент наистина прилича на опит за пробиване на дупки в небето. Това е шега, разбира се. Идеята е не да се пробие небето, а да се „запалят“ в него няколко ярки изкуствени звезди, които да се ползват за коригиране на деформациите на вълновия фронт, които атмосферата над нас създава.

Деформация, вълнов фронт…

За какво става дума?

Представете си една звезда. За простота нека да разгледаме само светлината, която звездата излъчва в един безкрайно къс интервал – това ще е къс светлнинен импулс. Какво се случва с него? – Той се разпространява под формата на идеална кръгла сфера, без деформации, с център съвпадащ със центъра на звездата. Повърхността на сферата – която е именно споменатият по-нагоре вълнов фронт – се разширява със скоростта на светлината и продължава да си е идеално сферична (ефектите от разредения материал в междузвездното пространство са пренебрежими), докато не се сблъска с въздуха в … земната атмосфера.

Земната атмосфера, ни по-малко, ни повече, прави възможен живота на Земята, но за нас астрономите тя е досадна пречка. Проблемът ни е, че тя е динамична – в нея има слоеве в различно налягане и температура, въздухът се движи, плътността му се сменя и заедно с всички тези процеси се менят и оптичните му свойства. Спомнете си, как трептят звездите, когато ги наблюдаваме близо до хоризонта или как се мени формата на морското дъно, когато го гледате през плискащата се вода…

Същото се случва и със звездната светлина, когато навлезе в атмосферата: повърхността на идеалната сфера се нагърчва и далечните звезди вече не изглеждат като точки, а като малки дискове. Грубо казано, размерът на тези дискове се нарича астрономическо качество на изображението (seeing), и е важна характеристика на мястото, където се строят обсерваториите. Според това изискване Чилийските Анди, Хаваите и Южният полюс са някои от местата, най-подходящи за строеж на обсерватории.

За съжаление дори и там атмосферата изиграва своята роля, а да се изкарват телескопите в космоса, над нея, е скъпо удоволствие (за справка космическият телескоп Хъбъл струва около 2.5 милиарда долара, а всеки един от четирите ВЛТ – около 80 милиона евро; за поддръжката д не говорим – един ремонтен полет до Хъбъл струваше около половин милиард, а годишната издръжка на 4-те телескопа на Паранал – тук не броя по-малките – е около двадесет пъти по-евтина).

Но как да направим така, че наземните телескопи да „виждат“ толкова ясно, както космическите?

През 1953 година американският астроном Хоръс Бабкок предлага да се използва деформируемо огледало, чиято форма се контролира с компютър толкова бързо, че може да проследява „трептенето“ на звездите и да ги „заковава“ на едно място, така че да изглеждат като точкови източници, а не като дискове, каквито ги прави атмосферата (може да видите как изглежда изображението на една звезда без и с използване на адаптивна оптика: https://en.wikipedia.org/wiki/File:Ao_movie.gif).

Адаптивната оптика не бива да се бърка с активната оптика, която само компенсира деформациите на големите телескопни огледала заради неравномерното им натоварване, включително и от собственото им тегло.

Трябва да минат десетилетия, преди да се появят две технологии, които да направят възможна адаптивната оптика: достатъчно бързи компютри и достатъчно чувствителни детектори (по времето на Бабкок астрономите използват фотографски филми и плаки, които регистрират едва няколко процента от падащите върху тях фотони; съвременните цифрови детектори регистрират 90-95 процента от фотоните).

Първи използват адаптивната оптика американските военно-въздушни сили по времето на Студената война за да наблюдават Съветски спътници (интересна статия за това, но на английски: http://www.npr.org/2013/06/24/190986008/for-sharpest-views-scope-the-sky-with-quick-change-mirrors).

През 90-те години постепенно новата технология става цивилна и започва да се използва в астрономията. Тя обаче има едно изискване – да се наблюдават ярки обекти, чието „трептене“ се проследява и коригира. Уви, интересните звезди не са така ярки като съветските спътници. В началото това ограничава астрономическите приложения на адаптивната оптика до изследване на околностите на ярки звезди – например за да се търсят около тях планети – точно по този метод преди повече от десет години беше наблюдавана за пръв път планета в друга слънчева система именно в нашата обсерватория (https://www.eso.org/public/news/eso0428/).

Не знам на кого принадлежи идеята да се използва лазер, за да се заобиколи това ограничение, но тя се свежда до следното – високо в атмосферата, на около 20-30 километра има слой от натрий. Ако насочим нагоре натриев лазер, светлината излъчена от него ще бъде погълната от натриевите атоми в този слой и ще бъде преизлъчена, но във всички посоки; част от преизлъчената светлина ще се върне към нас и в резултат ще се получи изкуствена звезда.

Четирите лъча от снимката създават точно такива ярки изкуствени звезди. А са четири, за да може да се коригира качеството на астрономическото изображение върху по-голяма площ на небето. Апаратурата все още се изпробва. Една от първите й задачи ще бъде да наблюдава центъра на нашата Галактика, към който в момента се приближава голям газов облак. Той едва ли ще е достатъчен за да направи от Млечния път истинска активна галактика (за щастие), но наблюденията на процесите, които ще съпътстват преминаването му от там със сигурност ще ни кажат нещо интересно за нашия дом, Млечния Път.

sam_2795a

Advertisements

Leave a comment

Filed under astronomy, астрономия, наука, science

Българска популяризация на науката: есе от Светослав Александров в The Space Rreview за свободния достъп до изображенията от космоса


Една картинка се равнява на хиляда думи, твърди известната английска поговорка. Картинките от космоса сигурно са еквивалентни на още повече думи, защото ни пренасят в светове, които нямаме (и сигурно скоро няма да имаме) възможността да докоснем и усетим със собствените си сетива. Есе за значението на свободния достъп и по-специално за начина, по който се организира този достъп до снимките от космическите станции, написано от българина Светослав Александров, беше публикувано в The Space Rreview: http://thespacereview.com/article/3052/1

За самия Светослав Александров може да научите повече от блога му (https://svetlyoalexandrov.wordpress.com/) и от страницата му във Фейсбук (https://bg-bg.facebook.com/svetlyoalexandrov/).

Забележете, че есето е предизвикало доста оживена дискусия.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Видео-доклади за космическия телескоп „Джеймс Уеб“


Институтът (Space Telescope Science Institute; http://www.stsci.edu/portal/; https://en.wikipedia.org/wiki/Space_Telescope_Science_Institute), който в момента „кара“ космическия телескоп „Хъбъл“, и през Октомври 2018 предстои да „подкара“ космическия телескоп „Джеймс Уеб“ е подготвил няколко доклада за новия телескоп и те са достъпни под формата на видеозаписи и презентации: https://confluence.stsci.edu/display/JWSTLC/JWST+Community+Webinars

Серията е започнала през месец Януари.2016 година, следващият доклад е на 20.Септември.2016. Докладите са на английски. Траят по около един час и нивото е като за професионални астрономи или за напреднали любители. От друга страна това са записи и ако човек не разбира нещо, може да спре записа, да прослуша отново неясната част и дори да потърси превод или обяснение в мрежата. Сред докладчиците са научните ръководители на моята дисертация от университета в Тюсон.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Планета около звездата Проксима в съзвездието Центавър: запис на интервю с обяснение на резултата от предаването “Преди всички” на програма „Хоризонт“


Журналистката Ирина Недева отрази откритието на новата планета в предаването “Преди всички” на 25.08.2016. Запис на фрагмента може да се чуе тук: http://bnr.bg/horizont/post/100730227/nai-blizkata-do-nas-ekzoplaneta-e-na-razstoanie-malko-nad-4-svetlinni-godini-i-obikala-okolo-zvezdata-proksima

Leave a comment

Filed under astronomy, астрономия, наука, science

Екзопланета в задния ни двор: проектът „Бледа Червена Точка“ докладва за откритие на планета около звездата Проксима в съзвездието Центавър, най-близката звезда до слънчевата система


Проектът и крилатата фраза: В края на 80-те години на миналия век гениалният популяризатор на астрономията Карл Сейгън предлага да се използва една от космическите станции „Вояджер“, които вече са пресекли орбитите на Юпитер и Сатурн, за да се направи снимка на Земята. Идеята е осъществена в началото на 1990 година (тя може да се види тук: https://en.wikipedia.org/wiki/Pale_Blue_Dot). По-късно Сейгън коментира, че „всяко човешко същество, който някога е живяло, е изживяло живота си“ на тази бледа синя точка.

Създателите на проекта „Бледа червена точка“ (https://palereddot.org/), макар и активни учени-изследователи, също са и популяризатори. Те променят символичната фраза на Сейгън за да отразят правилно червения цвят на най-близката до Слънцето звезда – Проксима. Проксима е най-близкия до Слънчевата система член на система от три звезди, заедно с много по-известната двойна звезда Алфа Центавър А и Б. Проксима е пренебрегната от вниманието на широката публика, вероятно защото не е ярка – макар да е близка до нас, тя е слаба и студена червена звездичка и принадлежи към клас, който астрономите наричат М. За разлика от Алфа Центавър, Проксима е невидима за човешкото око – в оптичния диапазон, в който са чувствителни нашите очи, тя е приблизително сто пъти по-слаба, от най-слабите звезди, който хора с отлично зрение могат да видят.

Проектът „Бледа червена точка“ е замислен като съчетание на научно и популяризаторско начинание: на страницата му е отразен в подробности процесът на правене на наука, от идеята, през наблюденията и тяхната обработка, до подготовката и публикуването на научната статия (https://www.eso.org/public/announcements/ann16002/).

Методът: Проектът „Бледа червена точка“, ръководен от Гуем Англада-Ескуде от Университета Куин Мери в Лондон (http://astro.qmul.ac.uk/directory/g.anglada; https://www.researchgate.net/profile/Guillem_Anglada-Escude), използва добре известния метод на радиалните скорости. С помощта точно на този метод през 1995 година швейцарските астрономи Майор и Коло откриха първата екзопланета около звезда от слънчев тип – 51 Пегас б (https://en.wikipedia.org/wiki/51_Pegasi_b).

Методът не изисква да се „види“ директно една планета, достатъчно е да се „вижда“ звездата. Използва се факта, че звездата и нейната планетата се движат по орбити около общ център на масата, който не съвпада с центъра на звездата. Разбира се, орбитата на звездата е много по-малка от орбитата на планетата. При движението по орбитата си звездата се отдалечава или приближава към нас, при което нейният спектър се измества заради ефекта на Доплер. Съвременните астрономически инструменти са в състояние да регистрират това отместване.

В чисто практически аспект методът се заключава в получаване на множество спектри през достатъчно дълъг интервал от време, който трябва да покрие поне веднъж периода на планетата. После се измерва радиалната скорост на звездата от всеки спектър, и по получената крива на скоростите се определят периода и амплитудата на кривата на радиалната скорост, а от там, по закона на Кеплер, се определя отношението между масите на планетата и на звездата.

Анимация, която добре илюстрира метода може да се види тук:

http://images.google.de/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2F3%2F33%2FESO_-_The_Radial_Velocity_Method_%28by%29.jpg&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDoppler_spectroscopy&h=2094&w=2374&tbnid=gLybRk9ZRxgSuM%3A&docid=KwG2Ep3qqhCr6M&ei=QG69V5DvCIfVsAHnna7oDw&tbm=isch&iact=rc&uact=3&dur=1031&page=1&start=0&ndsp=36&ved=0ahUKEwiQj6nc49nOAhWHKiwKHeeOC_0QMwgcKAAwAA&bih=1076&biw=1379

Откритието: около Проксима има планета, с маса 1.4 пъто по-голяма от масата на Земята. Планетата се движи по орбита с период 11.2 дни и радиус 0.05 астрономически единици (около двадесет пъти по-близо до Проксима, отколкото Земята е до Слънцето; една астрономическа единица е равна на радиуса на земната орбита). Планетата се намира близо до външната граница на обитаемата зона на Проксима и получава от своята звезда около 65% от енергията, която Земята получава от Слънцето; не е изненадващо, че новата планета е по-студена от Земята – температура на повърхността ѝ е около 235 градуса по скалата на Келвин, или четиридесет градуса под нулата по скалата на Целзий. По този параметър новата планета по-скоро прилича на Марс.

Но това не е цялата история – много вероятно планетата има период на денонощно въртене, равен на орбиталния период, т.е. тя винаги е обърната към звездата с една и съща страна (подобно на това как Луната винаги е обърната към Земята с една и съща страна). Следователно, на повърхността на планетата има голяма температурна разлика между страните с вечен ден и с вечна нощ.

Друго усложнение идва от възможността планетата да има атмосфера – ако тя е достатъчно плътна, парниковият ефект е в състояние да повиши температурата на повърхността ѝ над точката на замръзване на водата.

Кривата на радиалната скорост намеква – това е най-подходящата дума – за наличието на още един обект в системата на Проксима, защото след премахването на сигнала от новооткритата планета, остава още един сигнал, под формата на бавна промяна на лъчевата скорост на звездата. Ако наличието на това тяло бъде потвърдено, то ще има период, много по-голям от два месеца (колкото е продулжила последната кампания с HARPS).

Анализ:

– Откриването на планета почти в обитаемата зона на най-близката до Слънцето звезда е епохално откритие. Ако съществуването на планетата се потвърди, тя ще е най-близката до нас екзопланета. Тя има и потенциала да бъде най-близката обитаема планета до нас. Това са две „най“, който няма как да бъдат надминати, просто защото няма друга звезда, по-близка до Слънцето от Проксима. Наличието на планети от земен тип около Слунцето и най-близката до него звезда не е вероятно, освен ако планетите от земен тип не са широко разпространени във Вселената.

– В известен смисъл, откриването на планета около Проксима не е изненада, защото е известно, че на всяка звезда от М клас се пада поне по една планета; проблемът е, че част от М звездите имат по няколко планети, а друга част – нямат никакви (или са толкова малки, че все още не сме ги открили). Също така, като правило планетите в системите на М звездите са малки, не по-големи по маса от Нептун (който е 17 пъти по-тежък от Земята и 19 пъти по-малко масивен от Юпитер), така че и ниската маса на планетата не е изненада.

– Още от сега може да се каже, че планетата вероятно наистина съществува, главно защото сигналът, който тя произвежда, може да се проследи в наблюдения, които покриват почти десетилетие. По-рано той е бил приписван на активността на звездата, но този дълъг период, в който сигналът продължава неизменно да се наблюдава, изключва възможността той да е породен от активност на звездата, защото петната, които са причината да се „откриват“ несъществуващи планети обикновено не са стабилни за толкова дълго време. Нещо повече, паралелно с измерването на радиалната скорост, астрономите от проекта „Бледа червена точка“ са проследили и яркостта на Проксима, защото петната биха довели и до наличието на периодичен сигнал и в яркостта на звездата. Както се очаква за такава студена звезда, яркостта на Проксима се мени, но не със същия период като на новооткритата планета, което е допълнителен аргумент, че новата планета наистина съществува.

Въпроси и отговори:

– Има живот на новооткритата планета? – Не е известно.

Традиционно „обитеаема зона“ около една звезда е зоната, в която равновесните температурни на планетите, които я обикалят, ще са такива, че да позволят наличието на течна вода, т.е. ще са между нула и сто градуса Целзий. За Слънцето, което е много по-горещо и дава на планетите си повече енергия, обитаемата зона е по-далече и се намира приблизително между орбитите на Венера и Марс, но Венера е вече твърде гореща, а Марс е твърде студен. За Проксима в тази зона ще се намират планети с периоди между около 4 и 14 дни, но тези граници са размити, защото тяхното положение зависи не само от енергията, която планетите получават от звездата, а и от размера и масата на самите планети, от вида на повърхността и от характера на атмосферата им. В това отношение фактори са: отражателната способност, т.е. доколко повърхността на планетата отразява и доколко поглъща светлината на звездата; дали има парников ефект – ако Марс беше по-голям, на него би могъл да се поддържа парников ефект и съответно да има условия за наличие на течна вода.

Условията за обитаемост не зависят само от наличието на течна вода. Студени звезди от спектрален клас М като Проксима имат активни атмосфери. Това означава, че повърхността им често е покрита с петна, много повече и много по-големи от слънчевите петна. Петната са свързани с активност с чести избухвания и повишено ултравиолетово и рентгеново излъчване. С други думи, повърхността на планетата е бомбандирана със смъртоносна (за нас) радиация. Подобни обстоятелства правят живот – още веднъж подчертавам, живот като нашия – лошо приспособен за тази планета.

– Можем ли да посетим новооткритата планета? – Теоретично, да. Но да не забравяме, че Проксима е толкова далече от нас, че светлината от нея достига до Слънцето за около 4.2 години. Със съвременните химически ракетни технологии изпращането дори на автоматична станция до там ще изисква 70-80 хиляди години. Проектът Старчип (http://breakthroughinitiatives.org/Initiative/3; https://en.wikipedia.org/wiki/StarChip_%28spacecraft%29), който предвижда пътуване със скорост 15-20% от скоростта на светлината, в случай на успех, може да изпрати автомати до Проксима за 20-30 години. На този етап за пилотирана експедиция е трудно да се правят каквито и да е предположения.

– Може ли да видим новооткритата планета? Какво е това откритие без снимка? – За съжаление планетата е прекалено близо до звездата, за да бъде наблюдавана пряко: при радиус на орбитата 0.05 астрономически единици (една астрономическа единица е равна на радиуса на земната орбита, около 150 милиона километра), се вижда от разстояние от 1.3 парсека (около 4.2 светлинни годни) като ъгъл от около 0.04 ъглови секунди (1 ъглова секунда е равна на 1/3600 част от градуса). Най-добрите от съвременните телескопи могат да разграничат два обекта само ако те са на ъглово разстояние по-голямо от около 0.1 ъглова секунда и то ако яркостите им не са прекалено различни. Обаче следващото поколение инструменти, особено космическите коронографи вероятно ще могат. Нещо повече, много е вероятно откриването на тази планета ще ускори построяването на подобни инструменти, така че не е изключено след едно или две десетилетия да разполагаме със снимки на новооткритата планета.

– Каква е връзката на ЕСО (Европейската Южна Обсерватория; http://www.eso.org/public/) с това откритие? – Проектът „Бледа червена точка“ използва два спектрографа на ЕСО, за да мери радиалната скорост на Проксима: UVES (http://www.eso.org/sci/facilities/paranal/instruments/uves.html) и HARPS (http://www.eso.org/sci/facilities/lasilla/instruments/harps.html). Фотометричните наблюдения използват други, по-малки телескопи в Чили.

– Вие имате ли нещо общо с това откритие? – Не, аз не съм свързан по никакъв начин с проекта „Бледа червена точка“ и не сътруднича с нито един от участниците в него по никакви други проекти; служител съм на ЕСО, но работата ми не е свързана с нито един от използваните инструменти. С други думи, нямам конфликт на интереси.

Материали за пресата:

– съобщение за пресата на ЕСО: http://www.eso.org/public/news/eso1629/?lang и в „детска“ версия: http://www.eso.org/public/news/eso1629/kids/?lang

– научна статия с сп. Nature: http://www.eso.org/public/archives/releases/sciencepapers/eso1629/eso1629a.pdf

– видео с обяснения: https://www.eso.org/public/videos/eso1629a/

Любопитно: Проксима често се появява в научно-фантастичните произведения: https://en.wikipedia.org/wiki/Stars_and_planetary_systems_in_fiction#Proxima_Centauri_.28Alpha_Centauri_C.29

Leave a comment

Filed under astronomy, астрономия, наука, science

ESO Reflex Video Tutorials


Reflex is an environment that provides an easy and flexible way to reduce VLT/VLTI science data using the ESO pipelines. I have prepared some video tutorials how to use those pipelines.

The youtube play list is available here: https://www.youtube.com/channel/UCCq4rxr30ydNyV94OWmLrMA

More about Reflex: https://www.eso.org/sci/software/reflex/

Leave a comment

Filed under astronomy, астрономия, наука, science

Астрономия, статия на деня: когато писателите фантасти се хванат за калкулаторите или може ли слънцето никога да не залязва над Татуин


В заглавието би трябвало да заменя калкулаторите с логаричтмични линийки, защото някой от статиите, който ще спомена по-нататък са доста стари.

Към размисли на тази тема ме подтикна една статия, която се появи през октомври миналата година на Ливърморския сървер за препринти от моя любим писател, австралиецът Грег Игън: http://arxiv.org/abs/1510.05345

Статията е изпратена в Astrophysical Journal, америакнско научно списание, което заедно с другото американски списание Astronomical Journal (то е ориентирано повече към чисто наблюдателни изследвания), с английското Monthly Notices of the Royal Astronomical Sosciety и с общоевропейското Astronomy and Astrophysics са местата където астрономите най-често публикуват статиите с резултатите си.

Все още статията на Игън не е приета, защото не е излязла на страницата на самото списание, но съдейски по това, че на сървера в края на май се появи трета коригирана версия, процесът ѝ на рецензиране е доста напреднал.

Игън не е чужд на научните публикации. По образование той е математик, има статии по изчислителни методи и нищо чудно, че тук става дума за теоретична работа.

Всичко започва малко по-рано – през 2015 година амерканският професор Юджин Окс, професор по физика в Университате в Оубърн публикува статия, в която предалага нов вид орбити в системите на двойни звезди.

* * *

Традиционно се смята, че ако звездите са достатъчно далече, около всяка от тях може да има стабилни планети. Точно такава е планетната система около главната звезда на двойната система Гама Цефей. Интересно, че първи докладваха за наличието на планети около тази звезда няколко канадски учени още през далечната 1988 година (Кябмъл, Уокър и Янг: http://adsabs.harvard.edu/abs/1988ApJ…331..902C; пдф-ът е публично достъпен), но резултатът им беше подложен на съмнение, и така откриватели на първата екзопланета станаха швейцарсите Майор и Коло през 1995 годна (http://adsabs.harvard.edu/abs/1995Natur.378..355M).

Вторият известен тип планетни орбити в двойните системи обикалят около центъра на масите на двете звезди и отново изминава време, преди първата подобна система да бъде призната от астрономическата общност – през 1993 година Торсет, Арзуманян и Теълър публликуваха статия (http://adsabs.harvard.edu/abs/1993ApJ…412L..33T), в която описват планета с маса около 30% от масата на земята, обикаляща около двойка състояща се от пулсар и бяло джудже. Към настоящия момент са известни двадесетина подобни планети (https://en.wikipedia.org/wiki/Circumbinary_planet), включително и около двойни звезди от глваната последователност.

* * *

Окс предлага съвършенно нов вид орбита в която планетата обикаля не около звездите, а около оста, която ги свързва. Представете си гира, в която топките са двете звезди. Дръжката е въпросната ост помежду им и планетата ще се движи по орбита, лежаща в развина перпендикулярна на дръжката.

Разбира се, аз тук опростявам. Статията на Окс се състои от дванадесет страници с формули, тук-там разредени с някоя фигура. Рашението е аналичитно, което не е за чудене, защото Окс е от руски произход (и вероятно първото му име всъщтност е Евгений, а не Юджин), а руската физика е известна с добрата си аналитична школа – бившите студенти по физика никога няма да забравят многотомника на Ландау и Лифшиц. Без да се задълбочавам с подробности само ще поясня, че орбитата всъщюност ще бъде конично сечение, например елипса, и равнината ѝ може да осцилира около точката на Лагранж между двете звезди. За любопитните – на Фигура 3 в статията на Окс има скица, която дава по-добра представа.

Наличието да подобни стабилни орбити е интересно по няколко причини. Първо, то има потенциала да разшири жилищната площ във Вселената, защото около 1/3 от звездите принадлежат на двойни, тройни и други системи с по-висока кратност. Второ, подобни системи са интересни с по-лесната си наблюдаемост – има голяма вероятност те да имат транзити (известни още като пасажи). Като истински теоретик Окс изследва и възможността планетите да бъдат открити по излъчваните гравитационни вълни. Гравитационни вълни излъчва и Земята докато обикаля около Слънцето, но планети на новопредсказаните орбити можат да имат много по-къса година от земната, и следователно ще излъчват с много по-голяма интензивност

* * *.

Татуин не обикаля около оста, свързваща двете звезди, който залязваха пред Люк, защото на плнетите, предсказани от Окс, двете звезди никога няма да се виждат едновременно, те винаги ще бъдат от противоположните страни на планетата, от което следва, че на нея никога няма да има нощ. През Викторианската епоха са казвали, че слънцето никога не залязва над Британската империа, просто защото тя е толкова голяма, че има територии на противоположните части на Земята. Слънцето (по-скоро едно от слънцата) никога няма да залязва над която и да е държава, намираща се Окс-овите планети.

Във фантастиката са описани планети, намиращи се в системите на двойни и по-високократни звездни системи. Един съвем скорошен пример е трилогията „Проблемът на трите тела“ (https://en.wikipedia.org/wiki/The_Three-Body_Problem; първият том спечели наградата Хюго за най-добър роман през 2015 година) от китайския автор Ли Ксицин. Там орбитата на планетата е хаотична, кратки епохи на „обитаемост“ се редуват с продължителни периоди, през които планетата е или леден хладилник, или огрнена фурна. Местните форми на живот се е приспособили, развивайки способност да се обезводняват и хибернират в този вид през периодите на необитаемост.

* * *

Статията на Игън е дълга само три странички – доста по-малко от обичайното. Тезата ѝ е описана кратко и ясно в абстракта: орбитите, предложени от Окс са нестабилни, ако се отчете орбиталното движение на двойната звезда. За да е стабилна орбитата, ъгловият момент трябва да се запазва; Окс допуска това, разглеждайки кръгова планетна орбита, точно перпендикулярна на линията, свързваща двете звезди, а Еган проверява това допускане и демонстрира, че ъгловият момент ще се мени с период, развен на периода на въртене на двойната звезда около общият ѝ център на масите.

Аз съм обикновен наблюдател, а не специалист по звездна динамика, статията все още не е приета за публикация, така че ще изчакам да преди да съдя кой е прав – очевидно проблемът не нетривиален и е лесно да се пропусне някой фин ефект. Ако Игън е прав, може само да съжаляваме, че предложените от Окс планетни системи не съществуват.

* * *

За мен е интересно друго – как би се образувала подобна система и дали изобщо е възможно. Проблемът е, че практически (запомнете тази уговорка, по-надолу ще се върна към нея) всички звездни системи, който познаваме до сега – от планетните системи и двойните звезди до галактиките, са се образували от диск – протопланетен, протозвезден или протогалактичен. Това е свързано с процеса на свиване на облаците материал, от които тези системи се образуват и с факта, че колапсът никога не е сферично симетричен. Достатъчно е облакът да има съвсем малко въртене преди началото на свиването, за да създаде то центробежна сила, която да се противопостави на свиването. При това въртенето се засилва в процеса на свиване – също както танцуващите на лед се завъртат по-бързо ако свият ръцете си, заради запазването на въртящия момент.

Центробежната сила породена от въртенето се противопоставя на свиването само в равината на въртене, докато по оста на въртене свиването протича без проблем. В резултатът се образува диск. По тази причина орбитите на планетите в повечето планетни системи лежат приблизително в една равнина и повечето галактики имат дискове. Освен въртенето, магнитните полета и излъчването на вече образувани звезди мога да възпрепятстват свиването, тук разглеждам опростена картина.

Сега да се върнем към уговорката, която направих по-нагоре. Наистина, орбитите на повечето планети лежат в една равнина, но не всички, орбитата на планетата джудже Седна например е наклонена на около 12 градуса спрямо земната орбита. А при галактиките има обекти, чиято форма няма нищо общо с диск – например елиптичните галактики. И в двата случая отговрни за тези „отклонения“ са процеси на взаимодействие – между Седна и гигантските планети; между галактиките, от чийто сливане са са образували самите елиптични галактики.

Нещо подобно е необходимо за образуването на планетните ситема от типа, предсказан от Окс: логично е да се предположи, че равнината на орбитата на двойите звезди, които са двата най-масивни обекта в системата, ще съвпада с екваториялната равина на протозвездния диск, от който са се образували те. А орбитата на планетата е перпендикулярна на тази равнина и е мното трудно да си представим как ще се образува подобна планетна система и от къде ще се вземе моментът, който ще движи планетата по орбитата ѝ. Едиственото обяснение е взаимодействие с друга ситема, точно ориентирано в равнина, перпендикулярна на орботалана равнина на двойната звезда, а такова съвпадение е малко вероятно.

* * *

Това е аргумент за ниската вероятност да възникнат подобни сиситеми, а не аргумент за нестабилността им, какъвто привежда Игън. Моят аргумент има наблюдателно отвърждение – защото същият механизъм на образване работи при галактиките и там той е също толкова рядък: известни са галактики с две перпендикуларни структури (те се наричат галактики с полярен кръг: https://en.wikipedia.org/wiki/Polar-ring_galaxy) и честотата им при галактиките, които със сигурност са претърпели взаимодействия наскоро (по вселенски мащаби, разбира се; такива галактики сами по себе си се срещат рядко) се измерва с няколко процента (атлас и каталог на подобни галактики може да се види тук: http://adsabs.harvard.edu/abs/2011MNRAS.418..244M).

* * *

Игън не е единственият фантаст, оставил името си сред авторите на научни статии. Но обикновено пътят води в обратна посока – учени, прописват фантастика. Примерите са много, започвайки от Камил Фламарион (https://en.wikipedia.org/wiki/Camille_Flammarion) и стигайки до Алистър Рейнолдс (https://en.wikipedia.org/wiki/Alastair_Reynolds). Специално ще отбележа Борис Стргацки, който е работил известно време в Пулковската обсерватория, преди да стане професионален писател. Днес в астрономическите бази от публикации може да се намери една едиствена негова статия за асиметричната форма на планетите гиганти в Слъневата система (http://adsabs.harvard.edu/abs/1962IzPul..23..144P; това е статията, която навярно е написана с помощта логаричтмична линийка, а не на калкулатор).

Случаят с Игън е различен – той идва извън астрономията, макар да е програмист и специалист по приложна математика – и дава повод да си задам един друг въпрос: дали „външен“ човек може да произвежда научни резултати или специализацията в науката е достигнала ниво, което изключва подобна възможност. За това – друг път. А дали статията му ще бъде приета в списанието, ще покаже бъдещето.

Leave a comment

Filed under astronomy, астрономия, наука, science

Астрономия, статия на деня: първият спектър на WISE 0855-0714 – кафявото джудже на което можете да карате ски


Според различни оценки температурата на WISE 0855-0714 (https://en.wikipedia.org/wiki/WISE_0855%E2%88%920714) е в границите 225-260 градуса по скалата на Келвин, което съответствува на -48 до -13 градуса по скалата на Целзий. Това са стойности, типични за Антарктида. Човек може да живее, макар и не особенно комфортно, при подобни температури. За сравнение температурата на Юпитер е около 130 градуса по скалата на Келвин (-143 по скалата на Целзий), което е вече прекалено ниско за нас.

Друга разлика между WISE 0855-0714 и Юпитер е в източника им на енергия – първият обект свети само и изключително за сметка на собствената си гравитация, която го свива и при това той се нагрява; Юпитер черпи по-голямата част от енергията си от Слънцето – той просто преизлъчва това, което получава от вън. И докато Юпитер се намира в нашата собствена Слънчева система, WISE 0855-0714 броди немил-недраг сред нищото, на около 2.3 парсека (около 7.5 светлинни години) от нас. По-близо от него са само тройната система на Алфа Центавър (1.3 парсека, 4.4 светлинни години; https://en.wikipedia.org/wiki/Alpha_Centauri), звездата na Барнард (1.8 парсека, 6.0 светлинни години; https://en.wikipedia.org/wiki/Barnard%27s_Star) и двойнотo кафяво джудже Luh-16 (2.1 парсека, 6.5 светлинни години; https://en.wikipedia.org/wiki/Luhman_16). Вероятността толкова близо до Слънцето да се намират две кафяви джуджета (дори три, ако вземем под внимание, че Luh-16 е двойно) означава, че тяхната пространствена плътност в нашата Галактика е много висока, но те нямат висока светимост и е трудно да бъдат наблюдавани.

Именно ниската светимост беше причина WISE 0855-0714 да остане незабелязан до 2014 година, когато моят колега Кевин Луман (https://en.wikipedia.org/wiki/Kevin_Luhman) го откри с помощта на космическата обсерватория WISE (https://en.wikipedia.org/wiki/Wide-field_Infrared_Survey_Explorer). WISE е малък 40-см телескоп, изстрелян от НАСА през Декември 2009 година. За сравнение космическият телескоп Хъбъл (https://en.wikipedia.org/wiki/Hubble_Space_Telescope) има диаметър 2.4 метра, а неговият наследник Джеймс Уеб ще има 6.5-метрово главно огледало. WISE работи в така наречения среден-инфрачервен диапазон – електромагнитно излъчване с дължиниа на вълната между 3.4 и 22 микрона. Точно в този диапазон излъчват най-голямата част от енергията си студените обекти, подобни на WISE 0855-0714. Но това е само едната от двете причини, откриването му да трябва да чака до влизането в работа на този сравнително нов космически телескоп.

Другата, и бих казал, по-важната причина е в стратегията на наблюденията, който предполагат една и съща област от небето да бъде „гледана“ от телескопа веднъж на всеки (приблизително) шест месеца. Обектите в околността на Слънчевата система се разопознават най-надеждно по техните големи паралакси (https://en.wikipedia.org/wiki/Parallax) на небето. Класическият пример за обяснение на паралакса е да си представите, че пътувате с кола по шосе покрай не особено далечен планински масив, и минавате покрай дърво. Близките дървоета буквало ще „летят“ на фона на планината, а дърветата по самата планина ще си „стоят“ неподвижни, както и самата планина. Шосето от Бургас за Стара Загора, Сините скали край Сливен и кое да е крайпътно дърво вършат работа, ако искате конкретен пример. Именно големия паралакс помогна на Кевин да разпознае и да докаже, че WISE 0855-0714 се намира съвсем близо до нас, разбира се по космически мащаби (статията за откритието в свободен достъп: http://arxiv.org/abs/1404.6501).

Дълго време наблюденията от космоса в средния инфрачервен диапазаон оставаха единствените, по които можеше да се съди за свойствата на WISE 0855-0714. Опитите това кафяво джудже да бъде наблюдавано от Земята след 2-3 часа експозиция, включително и от един мой аспирант, не се увенчаха с успех (http://arxiv.org/abs/1408.5424, http://arxiv.org/abs/1410.5649). Първата детекция от наземен телескоп дойде от телескопа Магелан – кадърът, получен след пет часа интеграция от Джаки Фахърти и нейните колеги показа обект, макар и не статически значим (само 2.7-сигма), но на правилно място. Статията в свободен достъп може да се види на: http://arxiv.org/abs/1408.4671. Новото наблюдение съответствува на модели за свръхстуденти кафяви обекти, които имат водни облаци в атмосферата си. Като се има предвид температурата на повърхността на WISE 0855-0714, може да се поздравим – човчеството вече знае за ски-курорт извън Слънчевата система.

Миналата седмица донесе богат урожай от наблюдения на WISE 0855-0714: инфрачервена фотометрия от телескопа Хъбъл (за която ще пиша друг път; http://arxiv.org/abs/1605.05618) и първия инфрачервен спектър от телескопа Джемини на Хаваите, получен от Ендрю Скемер от Калифорнийския университет в Санта Круз и неговите колеги (http://arxiv.org/abs/1605.04902). Спектърът покрива диапазона между 4.5 и 5.2 микрона и е продукт на 14.4 часа интеграция, получени в рамките на 13 различни нощи през периода Декември 2015 – Януари 2016. Наблюденията са правени само когато влажността на въздуха е особенно ниска; обратното означава висок фон и ниска прозрачност на атмосферата – два фактора, затрудняващи наблюденията в средната инфрачервена област. От наблюдателна гледна точка резултатът е забележително постижение, за което изкренно поздравявам колегите.

Полученият спектър много интересен. За съжаление няма много обекти, с които можем да го сравняваме – другите обекти с температура, подобна на температурата на WISE 0855-0714 са прекалено далече и прекалено слаби за подобни наблюдения. Остава Юпитер, който обаче около 4.5-4.7 микрона показва абсорпция от молекулата на фосфина (PH3), а спектърът на WISE 0855-0714 в този диапазон е плосък. Ако атмосферата на Юпитер беше в състояние на развниовесие, всичкият фосфор в нея щеше да е окислен (под формата на P4O6). Наличието на фосфин доказва, че атмосферата на Юпитер е турбулентна и динамична, поради което в нея се смесват материали от горещата й вътрешна част и от студента й атмосфера. Случаят с WISE 0855-0714 изглежда не е такъв, но по-слабата турбуленция може да не е единствената причина за разликата между този обект и Юпитер.

Друга молекула, която би могла да ни каже нещо повече за атмосферата на WISE 0855-0714 е CH3D – метан, в който единият водороден атом е заменен с деутериев атом. Деутерият се разрушава при по-масивните обекти и наличието му може да бъде доказателство за ниската маса на WISE 0855-0714. За съжаление неговите линии съвпадат с линиите на водата, което усложнява анализа; Скемер и колегите му са се отказали от опити да измерят количеството му.

Новополученият спектър отваря простор за работа на теоретиците, но дава насока и на бъдещите усилия да се изследват наблюдателно подобни свръхстудени обекти – чрез спектроскопия в диапазона 4.5-5 микрона, където те са най-ярки. Спектри на няколко кафяви джуджета от спектрални класове L и T бяка получени с японския космически телескоп AKARI (http://arxiv.org/abs/1210.3828), още няколко са достъпни за най-големите съвременни наземни телескопи; останалите ще трябва да чакат изстрелването на Джеймс Уеб.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Астрономия, статия на деня: (225088) 2007OR10 малък гигант в крайните квартали на слънчевата система


Когато през 1930 година Клайд Томбо открива Плутон, всички са убедени, че новото небесно тяло е деветата планета в Слънчевата система. Но шестдесет-седемдесет години по-късно станаха известни множество тела, сравними по размери с Плутон. Възникна “опасността“ в Слънчевата система да има двадесет или дори повече планети. Представете си кошмара за учениците в средния курс, който трябва да ги учат наизуст… Загрижен за успеваемостта, Международният астрономически съюз създаде нов клас планети-джуджета, в който освен „разжалваният“ Плутон влязоха Ерис, Макемаке, Церес, Аумеа, и други недорасляци.

(225088) 2007OR10 беше открит наскоро (статията в свободен достъп: http://arxiv.org/abs/0901.4173; на тази страница линковете към PDF се намирт горе вдясно), през 2009 година от Мег Шуамб (http://www.astro.yale.edu/mschwamb/Site/Home.html; понастоящем в Institute of Astronomy & Astrophysics, Academia Sinica, Тайван; ивестна още с участието си в проекта Planet Hunters: https://www.planethunters.org/) и съавтори. Откритието е част от нейната дисертация в Калифорнийския Технологичен Институт, където неин научен ръководител и е бил небезизвестният Майкъл Браун (https://en.wikipedia.org/wiki/Michael_E._Brown;http://www.mikebrownsplanets.com/) .

В известен смисъл Браун е съвременният астроном, който в най-голяма степен се е приближил до постиженията на Уйлям Хершел (откривателят на Уран; https://en.wikipedia.org/wiki/William_Herschel) и Йохан Гале (откривателят на Нептун; https://en.wikipedia.org/wiki/Johann_Gottfried_Galle), заради забележителните усилия, който полага за изследване на най-отдалечните части на Слънчевата система. На него и неговият екип принадлежат откритията на Седна, Ерис и съвместно с друг екип – на Аумеа, както и получаването на недиректни (за сега) доказателства за съществуването на масивна и все още ненаблюдавана девета планета на стотици или дори хиляди астрономически единици от Слънцето (статията в свободен достъп http://arxiv.org/abs/1601.05438; популярно обяснение: https://www.youtube.com/watch?v=6poHQ2h00ZA)

(225088) 2007OR10 е най-големият сред новооткритите обекти, на който все още не е присвоено име. Това тяло се намира на орбита с висока ексцентричност (е=0.5) и голям наклон спрямо земната орбитата (около 31 градуса), и то се отдалечава най-много на стотина астрономически единици от Слънцето. За (225088) 2007OR10 е известно сравнително малко и най-голям принос в характеризирането му има спектроскопските наблюдения на Браун, Бургасер и Фрейзър (статията в свободен достъп: http://arxiv.org/abs/1108.1418), според които на повърхността му има воден лед и вероятно – метан.

Трудно е да се измерят размерите на подобни обекти. Най-точният метод са фотографиите от космически апарати, посещаващи обектите, но дори най-бързите станции имат нужда от десетилетие за да се приближат до някой обект в пояса на Койпер (за справка New Horizons, която прелетя покрай Плутон, летя до там 9.5 години: https://en.wikipedia.org/wiki/New_Horizons).

Вторият метод са звездните окултации, с които съм се занимавал и аз – при тях обектът „скрива“ от наблюдателя на Земята някоя звезда и по продължителността на затъмнението се съди за диаметъра на окултиращото тяло; за това трябва да се знае добре орбитата на тялото. Ето един пример на статия, в която се описва окултация на Плутон: http://www.nature.com/nature/journal/v491/n7425/full/nature11597.html. За съжаление подобни наблюдения изискват обектът да засенчи ярка звезда, което се случва рядко.

На трето място, размерите на телата могат да се оценят по яркостта им: известно е колко енергия те получават от Слънцето, и ако приемем някаква средна отражателна способност (астрономическият термин за нея е албедо), ни остава само да оценим – фигурно казано – колко голямо огледало трябва да поставим на дадено разстояние от Слънцето, за да получим наблюдаваната яркост на обекта.

Тук опростявам в голяма степен – яркостта в оптическата област зависи силно от отражателната споосбност на тялото, поради което подобни измервания дават много по-точни резултати, ако се правят в инфрачервената област. Там телата светят не с отразена, а с преработена слънчева стветлина, превърната в топлина. Разбира се, изискват се и теоретични модели на згряването и преизлъчването на енергията. Точно такива измервания са направили Андрас Пал и неговите колеги от унгарската обсерватория Конколи: те са наблюдавали (225088) 2007OR10 с космическия телескоп Хершел (3.5-метров космически телескоп на Европейската Космическа Агенция: https://en.wikipedia.org/wiki/Herschel_Space_Observatory; да не се бърка с космическия телескоп Хъбъл) и са оценили диаметъра му на 1535 (+75 / -225) км, което го поставя на трето място по големина сред обектите в пояса ан Койпер, след Плутон и Ерис. Освен това те са използвали космическия телескоп Кеплер за да получат много точни измервания на яркостта на (225088) 2007OR10, от които са определили периода на въртене на обекта около осбствена му ос, с други думи колко е дълго неговото денонощеие – отговорът е около 45 дни, типична стойност за големите и масивни обекти от този клас, – и индиректно подкрепя резултата за големия му диаметър. Статията с описание на наблюденията и техният анализ е достъпна свободно на: http://arxiv.org/abs/1603.03090.

(225088) 2007OR10 е далече по-малък от оценките за размера на новия кандидат за девета планета (вероятно няколко пъти по-голям от Земята), за който споменах по-рано и е още едно доказателство, че външните части на Слънчевата система не са пустиня (и че не са одбре изследвани). Най-вероятно този обект е планета-джудже, и новите данни за неговия диаметър засилват аргументите за изваждането на Плутон от категорията на „истинските“ планети – Плутон става все повече „редови“ член на множеството обекти с подобни характеристики, които изглежда са масово явление в покрайнините на Слънчевата система.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Астрономия, статия на деня: планетната система TRAPPIST-1


Настоящата статия слага началото на рубрика по популярна астрономия в моя блог.

TRAPPIST е 60-сантиметров белгийско-швейцарски телескоп (TRAnsiting Planets and PlanetesImals Small Telescope; https://en.wikipedia.org/wiki/TRAPPIST), който работи на Ла Сия от 2010 година. Макар да се намира на най-старата наблюдателна база на ЕСО, телескопът е национален проект и за наблюдателно време с него не може да се кандидатства по обичайната система от заявки на ЕСО. За сметка на това консорциумът, който го използва, плаща на ЕСО „наем“ за използване съоръженията на обсерваторията.

TRAPPIST може да е малък, но вече си е осигурил място в историята на астрономията с наблюдения на множество окултации на астероиди и планети-джуджета (например http://adsabs.harvard.edu/abs/2012Natur.491..566O, с участието на вашия покорен слуга) и с откриването на първите пръстени около планета-джудже (Чарикло, http://adsabs.harvard.edu/abs/2014Natur.508…72B).

Преди седмица, на 2.05.2016, група колеги, предимно от Белгия и Швейцария, обявиха за ново откритие с TRAPPIST – система от три планети, обикалящи около студена червена звезда (или дори кафяво джудже – масата на тамошното „слънце“ е на границата между звезди и джуджета) само на 12 парсека от Слънчевата система. Панетите са открити по метода на транзитната фотометрия (https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets#Transit_photometry) – т.е. по намаляването на блясъка на звездата, когато планетата засенчва за наблюдателя част от звездната повърхност. Заради усилията на множество обзори, използващи този метод (https://en.wikipedia.org/wiki/HATNet_Project, https://en.wikipedia.org/wiki/SuperWASP, https://en.wikipedia.org/wiki/COROT, https://en.wikipedia.org/wiki/Kepler_%28spacecraft%29 и други) днес знаем за хиляди планети около други звезди. Някои от тези планети имат размери, сравними със земните. Случаят с трите планети около TRAPPIST-1 е точно такъв – радиусите им за 1.11, 1.05 и 1.16 земни радиуса. Масите им са неизвестни – за да се определят за необходими свръхточни измервания на радиалната скорост на звездата, които вероято ще бъдат получени със следващото поколение свръхстабилни астрономически спектрографи (например ЕСПРЕССО – https://www.eso.org/sci/facilities/develop/instruments/espresso.html).

Защо трите планети около TRAPPIST-1 са интересни:

– размерите им позволяват да са подобни на Земята. Тук подбрах думите си много внимателно, защото сходният радиус не гарантира сходство на физичните условия на повърхността на планетата: Венера има радиус около 0.9 от земния, но освен че се намира по-близо до Слънцето, нейната атмосфера е много по-гъста и там действа значителен парников ефект.

– те са далече от звездата в тяхната система, значително по-далече от така наречените „горещи“ юпитери – планетите от този тип бяха първите открити около „нормални“ слънцеподобни звезди (пример: https://en.wikipedia.org/wiki/51_Pegasi_b), но те не са подходящи места за живот подобен на нашия, защото температурите на повърхността им се измерват в хиляди градуси. Тук е от значение един параметър, наречен irradiance, който на български може да се преведе като облъчване, и описва енергията, която планетата получава от централната звезда. Например Венера получава от Слънцето около 2 пъти повече енергия на единица площ, отколкото Земята, Марс – около 2.3 пъти по-малко, а Юпитер – около 27 пъти по-малко. Но радиусът на орбитата не е единственият важен параметър: светимостта на централната звезда също има знаечние. В планетна система, където вместо звезда с темература около 6000 келвина като Слънцето, имаме много по-студента звезда, планетите трябва да се намират по-близо до нея за да получват същото облъчване. Случаят с планетите около TRAPPIST-1 е точно такъв: радиусите на техните орбити са 0.011, 0.015 и 0.022-0.146 (за сега орбиталните параметри на третата планета не са известн достатъчно точно, затова давам интервал) от радиуса на земната орбита; двете вътрешни планети получават съответно 4.25 и 2.26 пъти повече енергия от тяхната звезда, колкото Земята получава от слънцето. За най-външната планета наблюденията поставят граници между същото количество енергия, което получава Земята и 1/50 от него. С други думи, поне една от трите планети има шанс да бъде нова „бледа синя точка“ (https://www.youtube.com/watch?v=p86BPM1GV8M)

– TRAPPIST-1 е ярка звезда (http://simbad.u-strasbg.fr/simbad/sim-id?Ident=2MASS+J23062928-0502285). Наистина, тя не се вижда с просто око и е доста червена, но за възможностите на най-добрите съвременни (и от близкото бъдеще: https://www.eso.org/sci/facilities/eelt/, https://en.wikipedia.org/wiki/James_Webb_Space_Telescope) астрономически инструменти, особенно в инфрачервената област, тя позволява да се използват за изследването на планетите около нея множество техники, неприложими за болшинството от другите екзопланети. Най-важните, но не единствените от тези техники са транзитната спектроскопия (https://www.eso.org/sci/meetings/2014/exoelt2014/presentations/LopezMorales.pdf) и промяната на времената на транзитите (често съкращавано като TTV; https://en.wikipedia.org/wiki/Transit-timing_variation).

Авторите на откритието са подготвили чудесна страница с информация: http://www.trappist.one/

Системата на TRAPPIST-1, заедно с GJ1214b, GJ436b, GJ1132b и още няколко подобни планети с малки радиуси, открити наскоро от Kepler/K2 (http://kepler.nasa.gov/) ще бъде източник на нови знания за екзопланетите и което е особено интересно, ще ни помогне да разширим представите си за разнообразието на физическите параметри на екзопланетите.

Leave a comment

Filed under astronomy, астрономия, наука, science

Български ученици печелят четири медала на юбилейната 20-та международна олимпиада по астрономия, 16-22.10.2015, гр. Казан


Успех на българскиte ученици на юбилейната 20-та международна олимпиада по астрономия, 16-22.10.2015, гр. Казан. Те са спечелили четири медала:

– Стефан Иванов, ученик в 9-ти клас в ПМГ Бургас спечели златен медал и диплом за най-добър резултат сред всички участници волимпиадата

– Бойко Борисов, ученик в 9-ти клас в СМГ взе сребърен медал

– Георги Александров, ученик в 9-ти клас в СМГ – сребърен медал

– Петър Димитров, ученик в 9-ти клас в НПМГ – бронзов медал

Останалите участнци в отбора Владимира Иринчева, Димитър Томов и Феодор Кономаев получават дипломи за участие.

Ръководители на отбора са Ева Божурова,от НАОП “Николай Коперник” във Варна и Йоанна Кокотанекова, от школата по астрономия към Младежкия център в Хасково. За подготовката на отора са помагали Никола Каравасилев от Физически факултет на Софийския университет “Св. Климент Охридски”, Захари Дончев от Институт по астрономия на БАН, и Даниела Иванова от Математическа гимназия “Баба Тонка” – Русе.

Български отбори участват в олимпиадата от 1998 г. И до сега са спечелили общо 14 златни медала, но сега за пръв път има български абсолютен първенец.

Сника на отбора:

http://images.webcafe.bg/2015/10/23/43523423452342424/618×345.jpg

Отразяване в пресата:

http://www.webcafe.bg/newscafe/obshtestvo/id_1137516081

http://dariknews.bg/view_article.php?article_id=1520473

http://www.dnevnik.bg/detski_dnevnik/2015/10/23/2635423_s_chetiri_medala_se_zavrushtat_mladite_astronomi_ot/

http://www.standartnews.com/balgariya-obrazovanie/4_medala_za_balgariya_na__mezhdunarodnata_olimpiada_po_astronomiya-306583.html

http://novanews.novatv.bg/news/view/2015/10/23/128131/%D0%B1%D1%8A%D0%BB%D0%B3%D0%B0%D1%80%D1%87%D0%B5%D1%82%D0%B0-%D1%81-4-%D0%BC%D0%B5%D0%B4%D0%B0%D0%BB%D0%B0-%D0%BD%D0%B0-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B0-%D0%BF%D0%BE-%D0%B0%D1%81%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D1%8F-/

http://it.dir.bg/news.php?id=20373304

http://www.focus-news.net/news/2015/10/23/2139054/

Leave a comment

Filed under astronomy, Bulgaria, България, астрономия, наука, science

Следващата седмица – край Плутон!


На 14.юли.2015, десетина минути преди три часа следобед българско време, космическата станция New Horizons ще премине на около 13 хиляди км. от Плутон (приблизително колкото е разстоянието между София и Сантаго, Чили). Станицията беше изстреляна преди девет и половина години, тежи малко под половин тон, и носи на борда си седем научни прибора с общо тегло около 30 кг (статия за научната апаратура: http://arxiv.org/pdf/0709.4261.pdf и популярни обяснения на отделните уреди: http://pluto.jhuapl.edu/Mission/Spacecraft/Payload.php). Тя само ще прелети покрай планетата-джудже и нейните пет спътника с относителна скорост от около 13.8 км/секунда или почти 50 хиляди км/час (повече за Плутон и неговата ситема: https://en.wikipedia.org/wiki/Pluto), без да влиза в орбита (схема на прелитането: https://en.wikipedia.org/wiki/New_Horizons#/media/File:Pluto_encounter.pn). Влизането в орбита би изисквало много гориво, което би утежнило станцията и забавило полета й с десетилетия (Плутон няма плътна атмосфера, в която да се направи маневра за намаляване на скоростта, т.нар. aerobreaking). Времето на пътуване на сигнала от станциата до Земята по време на преминаването покрай Плутон ще бъде около четири часа и половина. Планът на мисията предвижда да се получат около 500 снимки на Плутон и неговите спътници, наред с други наблюдения – спектри, прахови частици, слънчев вятър, радиоокултация.
Преди няколко дни New Horizons пострада от компютърен проблем, но според плановете днес предстои да заработи отново в щатен режим. Последните кадри от преди появата на проблема могат да се видят тук: http://www.nasa.gov/feature/latest-images-of-pluto-from-new-horizons и на тях ясно се различав подробности от релефа.
Страници, на която може да се следят послендите новини от мисията са: http://pluto.jhuapl.edu/ и https://www.nasa.gov/mission_pages/newhorizons/main/index.html
Префразирайки Вячеслав Рибаков, който на свой ред префразира една еврейска пословица, ще се видим следващата седмица край Плутон!

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Press coverage of the Scholz’s star result


General news services:

BBC: http://www.bbc.com/news/science-environment-31519875

NBC: http://www.nbcnews.com/science/space/alien-star-missed-us-less-light-year-scientists-say-n307996

Daily Main: http://www.dailymail.co.uk/wires/pa/article-2959023/Solar-Systems-near-miss-revealed.html

The Huffington Post: http://www.huffingtonpost.com/2015/02/18/alien-star-solar-system_n_6708116.html

UPI: http://www.upi.com/Science_News/2015/02/18/Neighboring-star-once-came-within-a-single-light-year-of-the-sun/3581424273371/

The Telegraph: http://www.telegraph.co.uk/news/worldnews/northamerica/usa/11419374/How-our-solar-system-survived-a-near-miss-with-another-star-70000-years-ago.html

Mirror: http://www.mirror.co.uk/news/uk-news/scholzs-star-70000-years-ago-5188432

International Business Times: http://www.ibtimes.co.uk/earth-had-extremely-close-encounter-scholzs-star-70000-years-ago-1488485

Time of India: http://www.nbcnews.com/science/space/alien-star-missed-us-less-light-year-scientists-say-n307996

RIA: http://ria.ru/space/20150218/1048284973.html

Gazeta.ru: http://www.gazeta.ru/science/2015/02/18_a_6416921.shtml

Independent, Macedonia: http://www.independent.mk/articles/14494/Alien+Star+Passed+Close+to+the+Sun

The special prize for fact-non-checking goes to the Russian newsletter Komsomolskaya Pravda, that made a colleague of mine from Belarus and myself Russians: http://www.kp.ru/daily/26343/3226499/

Science news services :

Nature: http://www.nature.com/news/star-buzzed-solar-system-during-human-prehistory-1.16958

Discovery: http://news.discovery.com/space/astronomy/star-blasted-through-our-solar-system-70000-years-ago-150218.htm

Spacedaily: http://www.spacedaily.com/reports/Close_Encounters_of_a_Scholz_Kind_999.html

Minimal coverage in Bulgaria, understandable given the on-going political crisis with the huge amount of money, that the government is attempting to borrow. The champions of promoting science are:

http://www.haskovo.net/news/180169/Predi-70-hil.-godini-v-Slanchevata-sistema-imalo-osthe-edna-zvezd

http://nakratko.bg/category/29/77005/

http://www.perunik.com/news/180169/Predi-70-hil.-godini-v-Slanchevata-sistema-imalo-osthe-edna-zvezda

I have to admit, I never heard of any of them before.

Leave a comment

Filed under astronomy, астрономия, наука, science

Близка среща на слънцето с друга звезда


Преди около 70 хиляди години една звезда е преминала на съвсем близо до Слънцето – само на около 52 хиляди астрономически единици от нашето централно светило. По астрономически мащаби това е нищожно разстояние – звездата е пресякла най-външната част на облака на Оорт в покрайнините на Слънчевата система. Облакът на Оорт често е наричан резервоар на комети, защото от него произлизат дълго периодичните комети, които понякога посещават вътрешната част на Слънчевата система, и разкрасяват нощното небе.
За щастие звездата има малка маса (само около 15% от масата на Слънцето), и голяма скорост спрямо слънчевата система (около 80 км/сек; за сравнение Слънцето се движи с около 16.5 км/сек спрямо близките звезди), така че бързо ни е подминала, пресичайки облака на Оорт почти без да наруши движението на кометите по техните орбити.
Казвам за щастие, защото иначе човечеството сега щеше да бъде изправено пред потенциална орбитална бомбардировка. Имахме късмет.
Звездичката
(WISE J072003.20-084651.2; http://en.wikipedia.org/wiki/WISE_J072003.20-084651.2) беше открита от немския астроном Ралф-Дитер Шолц, от Института по Астрофизика в Потсдам, Германия през 2014 година и в негова чест се нарича „Звездата на Шолц“. Преди няколко месеца заедно с група колеги публикувах статия за нея: http://adsabs.harvard.edu/abs/2015A%26A…574A..64I (свободен достъп: http://arxiv.org/pdf/1410.6792v1), в която определихме характеристиките й.
Сега, заедно с няколко специалисти по звездна динамика и кинематика, публикувахме втора статия:
http://adsabs.harvard.edu/abs/2015ApJ…800L..17M (свободен достъп: http://arxiv.org/pdf/1502.04655v1), в която моделираме траекторията й, използвайки последните измервания на нейното движение в пространството.
Звездичката е двойна, и изключително слаба – даже в момента на най-близкото приближаване до Слънцето тя не се е виждала с просто око. Но звездите от този спектрален клас (М9.5V) понякога проявяват силна активност и в такъв момент само за няколко секунди или минути тя би могла да се види на небето като кратко проблясване.
Съобщение за пресата от Университета в Рочестър, от където е водещия автор на втората статия Ерик Мамеджек, може да се прочете тук: http://www.newswise.com/articles/a-close-call-of-0-8-light-years. Съобщение за пресата от Южноафриканската астрономическа обсерватория, в която са получени част от използвание наблюдения, може да е види тук: http://www.saao.ac.za/press-release/a-neighbourhood-stars-close-shave-with-our-solar-system/.

DSS1Red-red_DSS2IR-green_2MASSJ-blue_1b

Трицветно изображение на област от небето в близост до звездата на Шолц (в центъра), получено чрез комбиниране на кадри, получени през 1955 (червено), 1981 (зелено) и 1999 (синьо) години. Изместването на звездата с времето се вижда (илюстрация Валентин Д. Иванов).

Leave a comment

Filed under astronomy, астрономия, наука, science

Press release: Planet-like object may have spent its youth as hot as a star


WISE J030449.03-270508.3 belongs to a class of cold, extremely low mass objects, known as Y dwarfs. Only about twenty of those are known, and this one shows a peculiar spectrum suggesting that it may be metal-poor and/or older than previously identified Y0 dwarfs. It was discovered and studies by an international group of astronomers, including myself.

A link to the press release: http://www.ras.org.uk/news-and-press/2493-planet-like-object-may-have-spent-its-youth-as-hot-as-a-star

A link to the paper (accepted for publication in MNRAS): http://adsabs.harvard.edu/abs/2014arXiv1408.0284P

A full text pdf is publicly accessible at: http://arxiv.org/abs/1408.0284

Leave a comment

Filed under astronomy, астрономия, наука, science

Euronews story: “E-ELT: Europe’s extreme new telescope”


Almost a month ago, on Jun 18, .2014 the top of Cerro Armazones was blown up to clear a wider flat space for the new E-ELT. Contrary to what the Euronews title says, the abbreviation is deciphered European Extremely Large Telescope.

A team of journalists from the news channel led by Jeremy Wilks attended the event and prepared a report, featuring (briefly) yours truly: http://www.euronews.com/2014/07/17/e-elt-europes-extreme-new-telescope/

Bellow is the Paris-time broadcast schedule for the next week:

– Monday: 11:15, 22:45

– Tuesday: 15:15, 19:45

– Wednesday: 11:15, 18:45

– Thursday: 13:45, 18:15, 23:45

– Friday: 05:15, 11:45, 13:45, 15:15, 18:15

– Saturday: 12:45, 18:15, 21:45, 22:45

– Sunday: 08:45, 13:45, 19:15

Leave a comment

Filed under astronomy, астрономия, наука, science

Строителството на европейския 39-метров телескоп


Вчера, на 18.06.2014 година, върхът Серо Армазонес, в околностите на чилийския град Антофагаста, бе изравнен за да се създаде достатъчно голяма равна площадка за строителството на 39-метровия европейски телескоп Е-ЕЛТ (European Extremely Large Telescope; http://en.wikipedia.org/wiki/E-ELT). Телескопът е проект на Европейската южна обсерватория (European Southern Observatory; www.eso.org), в която работя от 2001 година. Предполага се, че неговото строителството ще отнеме десетилетие, и първите наблюдения ще започнат през 2024 година.

Най-лесно изравняването се прави с експлозия, което се случи тук към 2 часа следобед, чилийско време. Съобщение на ЕСО за пресата, с много снимки и видео от събитието може да се види тук: http://www.eso.org/public/news/eso1419/

Моето собствено видео е тук: https://www.youtube.com/watch?v=6ahsjKU-xhU

Leave a comment

Filed under astronomy, астрономия, наука, science

Астрономия на живо: конференция “The Search for Life Beyond the Solar System: Exoplanets, Biosignature & Instruments“, 16-21.03.2014, Tucson, Arizona


Конференцията “The Search for Life Beyond the Solar System: Exoplanets, Biosignature & Instruments“ може да се гледа на живо през Adobe Connect: https://connect.arc.nasa.gov/ebi2014/

Тя ще се проведе от 16 до 21.март.2014 в гр. Tucson, щатра Аризона. Проргамата с докладите може да се види тук: http://www.ebi2014.org/

Leave a comment

Filed under astronomy, астрономия, science

“ГОДИНА ОТ ПОНЕДЕЛНИЦИ” или приказка за новооткритото двойно кафяво джудже, само на 2 парсека от Слънцето


“Понедельник, понедельник,
понедельник дорогой,
принеси мне понедельник
непогоду и покой…”

Полузабравено стихотворение от забравен поет, четено в далечното детство. Но много подходящо точно за този понеделник, който ми донесе английската версия на “Cosmic Front. Illuminating the Magellanic Clouds” – документален филм на японската телевизионна програма NHK (http://pf.nhk-ep.co.jp/detail/1639), в което участвах почти случайно. Филмчето е интересно преди всичко с външния поглед към нашата работа.

Освен това понедленикът ми донесе и първата ни статия (http://adsabs.harvard.edu/abs/2013arXiv1303.7171K) за двойното кафяво джудже, което моят колега Кевин Луман намери само за 2 парсека от слънцето (http://adsabs.harvard.edu/abs/2013ApJ…767L…1L). Всъщност, нашата статия се появи в петък, когато я изпратихме в Astrophysical Journal Letters, и едновременно с това я пуснахме в един астрономически препринт сървър. А днес на същия сървър има още една статия (http://arxiv.org/abs/1303.7283), която потвърждава част от нашите резултати. Останалите резултати нито ги потвърждава, нито ги опровергава – простo ние имаме различен наблюдателен материал от техния, и можем да правим с него едно допълнително измерване, в частност да мерим лъчевата скорост на двата компонента. За изследването на кафяви джуджета и звезди с ниски маси този обект ще е същото, каквото беше свръхновата 1987А за изследването на свръхнови. А най-интересното е, че: (1) около двата му компонента могат сравнително лесно да се намерят планети – ако го има, разбира се, и (2) съвременните технологии _почти_ позволяват да се измерят директно радиусите на двата компонента, но дори да получим само горни граници, и това ще е успех.

Leave a comment

Filed under астрономия

Честита Нова Година с едно филмче за душата: метеорния поток Джеминиди от Паранал


Метеорите са прашинки, обикновено с маса по-малка от един грам, които се сблъскват със Земята, със скорости от порядъка на няколко десетки километра в секунда, и изгарят в атмосферата, оставяйки след себе си огнена следа. Джеминидите са метеорен поток, чийто радиант се намира в съзвездието Близнаци (Gemini на латински), от където произлиза името им. Максимумът на потока (когато има най-много метеори) е в средата на Декември.

 Моят приятел и колега Джанлука Ломбарди е създал невероятно красиво филмче с наблюдения на Джеминидите около максимума им през Декември 2012, направени от Паранал:

 

Leave a comment

Filed under астрономия, наука