Category Archives: astronomy

Извънземна станция ли е Оумуамуа? – Вероятно не. Хубав пример за научна журналистика.


Преди няколко дни се появи статия на двама физици от Харвард (единият от което е доста известният Аби Льоб, понастоящем ръководител на катедрата по астрономия), в която се разглеждат възможните обяснения на аномалното ускорение на Оумуамуа…

Но да не избързвам. Оумуамуа е междузвезден астероид, което „навести“ слънчевата система, идвайки от системата на друга звезда. Може само да гадаем от коя и как е бил „изхвърлен“ от нейната планетна система Оумуамуа (няколко статии по върпоса: https://arxiv.org/abs/1809.09009, https://arxiv.org/abs/1711.03558, https://arxiv.org/abs/1810.02148). Забележителна е формата му – обектът не е овален, а е подобен на пура (което е известно от кривата на блясъка му: https://arxiv.org/abs/1711.01402,

https://arxiv.org/abs/1711.04927, https://arxiv.org/abs/1712.06552). Преди известно време наблюденията показаха, че той се ускорява (аз писах за това: http://valio98.blog.bg/technology/2018/06/28/omuamua-oumuamua-ne-e-quot-myrtva-quot-i-se-uskoriava.1614590) с посока, обратна на Слънцето. С други думи, Оумуамуа се отдалечава от слънцето по-бързо, отколкото гравитацията предсказва.

Дон Линкълн (самият той е физик в един от големите американски ядрени центрове – Фермилаб, близо до Чикаго; https://en.wikipedia.org/wiki/Don_Lincoln) е написал чудесна научно-популярна статия за Оумуамуа, обяснявайки на „човешки“ какво се крие зад написанот от Абу Льоб. Може да я прочетете тук: https://edition.cnn.com/2018/11/07/opinions/oumuamua-alien-probe-opinion-lincoln/index.html

А самата статия на Байли и Льоб може да прочетете тук:

https://arxiv.org/pdf/1810.11490.pdf

Накратко, има две възможно обяснения за аномалното ускорение. Оумуамуа дълго, вероятно милиони години е пътувал в студеното междузвездно пространство. Приближавайки се до нашето Слънце, тялото е подложено на слънчевата радиация, което има две последствия.

Първо, повърхността му се нагрява, което води до изпарения на материал от нагрятата страна; представете си, че по повърхността на астероида „избухват“ малки гейзери. За обект с малка дори те са своеобразни ракетни двигатели, които прилагат върху астероида сила, в посока обратна на нагрятата страна, т.е. в посока, обратна на посоката към слънцето – което се наблюдава.

Второ, слънчевата радиация носи със себе си импулс и когато попада върху Оумуамуа, му предава този импулс. Мислете за всеки слънчев фотон като за миниатюрен юмрук, който удря Оумуамуа и го отхвърля по-далеч от Слънцето.

И двете явления са известно отдава и са наблюдавани при други небесни тела. За първото може да си припомним „гезерите“ който европейската научна станция „Розета“ наблюдаваше докато изследваше кометата Чурюмов-Герасименко“ http://www.esa.int/spaceinimages/Images/2015/01/Comet_activity_22_November_2014.

За съществуването на второто – наречено радиационно налягане (https://en.wikipedia.org/wiki/Radiation_pressure) – е предполагал още Кеплер, но математически го е описал едва Максуел, а експериментално го е регистрирал за пръв път Лебедев преди малко повече от един век.

И двата механизма могат да обяснят аномалното ускорение на Оумуамуа. Най-вероятно работят и двата, но допринасяйки вя различна степен за аномалното ускорение.

Масата на Оумуамуа и налягането на слънчевата радиация са известни и авторите изчисляват, че ако работи само и единствено (подчертавам – това е абстрактно разглеждане на крайния случай; допускане, а не наблюдателен факт) налягането на слънчевата радиация, астероидът трябва да е плосък, с дебелина 0.3-0.9 милиметра. Такава форма не се среща често (да не кажа – съвсем) при космическите обекти, но е именно такава, каквато бихме избрали, ако трябваше да строим сонда, използваща слънчевия „вятър“: платно.

Да не забравяме, че съществува и другата възможност – гейзерите-двигатели. Така, че допускането, за което споменах по-нагоре не е единствено и необходимо обяснение на ускорението.

По-голяма част от „сензационната“ статия е посветена на търсене на отговори дали космически апарат с платно би оцелял пътуване между звездите, защото той ще бъде подложен на разрушителното действие на удари от прахови частици и газови атоми, много от които които в ще „залепват“ към платното и ще увеличават масата на космическия апарат.

Много по-интересна е една друга работа на Lьоб, в която той и съавторите му разглеждат възможността междузвездни астероиди, подобни на Оумуамуа, да са носители на живот между звездните системи. Изведнъж се появяват наблюдателни ограничения на теорията за панспермията (https://en.wikipedia.org/wiki/Panspermia) и тя се превръща в нещо повече от абстракция… Но за това – друг път.

Все пак преди да приключа, ще добавя още една връзка – към съобщение в блога на списание „Scientific American“, където Льоб разсъждава за търсенето на следи от отдавна изчезнали космически цивилизации: https://blogs.scientificamerican.com/observations/how-to-search-for-dead-cosmic-civilizations/

 

Advertisements

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, научна фантастика, science, science fiction

Планетата с пръстена – нова научно-популярна статия в сп. „Осем“, брой 11/2018


Преди половин век Димитър Пеев публикува в класическото (и велико!) списание „Космос“ статия за Сатурн. Какво повече сме научили от тогава до сега за най-красивата планета в Слънчевата система? – Например, че Сатурн не е единственото небесно тяло с пръстени.
По-подробно четете в новия брой 11/2018 на списание „Осем“:
https://spisanie8.bg/admin/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-8-%D0%B1%D1%80%D0%BE%D0%B9-112018-%D0%B3.html
Списанието е достъпно в павилионите за разпространение на печата и в книжарниците.

Leave a comment

Filed under astronomy, астрономия, наука, science

Странни звезди: още една звезда с пръстен или с необикновени спътници


От време на време астрономите попадат на звезди, които не следват обичайното поведение, на милиардите си посестрими. Обикновено подобни находки са свързани с неподозирани явления или процеси.
Преди няколко години Табита Бояджиян (тогава постдок в Йейл; https://en.wikipedia.org/wiki/Tabetha_S._Boyajian) откри (статията, в която откритието беше обявено: https://arxiv.org/abs/1509.03622) в базата данни на космическия телескоп „Кеплер“ (https://en.wikipedia.org/wiki/Kepler_(spacecraft)), че една иначе обикновена звезда с телефонен номер KIC8462852 (https://en.wikipedia.org/wiki/KIC_8462852) вместо име (но има и име – звездата на Таби, от откривателката) показва странни промени в блясъка си – той намалява по странен начин. Най-дълбоките минимуми достигат 20% от нормалния блясък на звездата и не се подчиняват на никакви видими правила – формата им се мени и не следват строга периодичност.
За сега няма общоприета теория, която да обяснява наблюдаваните явления. Може би няй-близо до този статус се доближава теорията на двама словашки колеги, че около звездата обикалят няколко фамилии от разпадащи се астероиди или комети (https://arxiv.org/abs/1612.06121). Наскоро звездата на Таби отново показа активност, която бе регистрирана с наземни телескопи (https://arxiv.org/abs/1801.00732).
Обектът на Ерик Мамеджек (тогава професор в университета в Рочестър; http://www.pas.rochester.edu/~emamajek/) беше открит още по-рано и също показва намаляване на блясъка (https://arxiv.org/abs/1108.4070). Но за сега е потвърдено само едно такова намалячване, макар то да има сложна структура. Единственото обяснение е, че между нас и звездата е преминала планетата с огромна система от пръстени, многократно по-голяма и по-масивна от тази на нашия красавец Сатурн. При преминаването – наречено още пасаж или транзит – планетата „засенчва“ от нас част от повърхността на звездата и намалява светлината, която достига до нас.
Преди това откритие знаехме за съществуването на пръстени само около гигантските планети и около един (Чарикло: https://arxiv.org/abs/1706.00207) или най-много два (за втория не е съвсем сигурно) транснептунови обекта в Слънчевата система.
От края на 2009 година до сега на 4.1-метровия телескоп VISTA (https://en.wikipedia.org/wiki/VISTA_(telescope)) на Европейската Южна Обсерватория (https://www.eso.org/public/; https://bg.wikipedia.org/wiki/%D0%95%D0%B2%D1%80%D0%BE%D0%BF%D0%B5%D0%B9%D1%81%D0%BA%D0%B0_%D1%8E%D0%B6%D0%BD%D0%B0_%D0%BE%D0%B1%D1%81%D0%B5%D1%80%D0%B2%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D1%8F) в Чилийските Анди се прави обзор на вътрешната част на млечния път в инфрачервената област: VISTA Variables in Via Lactea (за кратко – VVV; https://arxiv.org/abs/0912.1056). Целта на тази огромна кампания, която продължава стотици нощи наблюдателно време, с участието на десетки астрономи от целия свят (включително български), е да изследва нашата галактика – Млечния път. Но данните могат да се използват за множество различни изследвания, едно от които е търсене на обекти, подобни на двете звезди, за които стана дума по-нагоре.
Заедно с група колеги от VVV попаднахме на нещо подобно: VVV-WIT-07 (което се разшифрова като VVV What Is This – 07). Все още нямаме ясна идея към кой от двата класа принадлежи нашата „странна“ звездичка. Статията, озаглавена „VVV-WIT-07: another Boyajian’s star or a Mamajek’s object?“ може да се прочете тук: https://arxiv.org/abs/1811.02265

Leave a comment

Filed under astronomy, Bulgaria, България, астрономия, наука, science

Интервю във в. „Нов живот“: До десет години ще заработи нов европейски телескоп, който ще направи Вселената много по-близка


Кажи професионалното си мнение каква е ползата за човечеството от проучването на звездите, от развитието на астрономията ? -Астрономията е била приложна наука още преди няколко века, по времето на Великите географски открития. Може би едно от последните открития в астрономията, което има значително практическо приложение, е откриването на хелия, но и то е на няколко века. В заниманията с астрономията има друго, което, според мене, е много по-важно. Това е, че астрономията, бидейки визуална, много достъпна и разбираема наука за човек без никаква подготовка, е в състояние да накара хората да си задават въпроси. Даже, бих казал, че по-интересни са не толкова въпросите, колкото навикът, който се изгражда у човека, да задава въпроси. Това всъщност е в основата на научния подход. Когато ти кажат нещо, естествената реакция трябва да бъде: „Защо? На базата на какво? Откъде знаеш?

Цялото интервю може да си прочете на: http://www.novjivot.info/2018/08/21/%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%B8%D0%BD-%D0%B8%D0%B2%D0%B0%D0%BD%D0%BE%D0%B2-%D0%B4%D0%BE-%D0%B4%D0%B5%D1%81%D0%B5%D1%82-%D0%B3%D0%BE%D0%B4%D0%B8%D0%BD%D0%B8-%D1%89%D0%B5-%D0%B7%D0%B0%D1%80/

Leave a comment

Filed under astronomy, България, астрономия, наука, science

Научно-популярна статия и научнофантастичен разказ в Сп. „Осем“, 8/2018


В новия брой 8 за 2018 г. на сп. „Осем“ са публикувани моя научно-популярна статия за космическия телескоп „Кеплер“ и научнофантастичен разказ, написан в съавторство с друг физик – Елена А. Лори:
https://www.spisanie8.bg/списание/списание-8-брой-82018-г.html

Анонсите им от страницата на списанието:

Mечтата на Бил
От Валентин Иванов

Ловецът на екозпланети „Кеплер“ е създаден, за да търси из Млечния път тези от тях, които наподобяват Земята. Но преди да може да се впусне в наблюдение на милиардите звезди, е нужно един човек да прояви невероятно упорство и да премине през неуспеха, за да се превърнат идеите му във факт. „Човек е голям, колкото са големи мечтите му“, е казал Екзюпери, а тази на Уилям Боруки е до Луната и отвъд. От историята на „Кеплер“ и неговия създател Бил разберете колко е важно никога да не се отказваш, макар да се наложи да преминеш през провала.

Планетата Туйп ви казва „Здравейте“
От Елена А. Лори и Валентин Д. Иванов; илюстрация Станимир Георгиев

Понякога и една обичайна неделна сутрин може да преобърне човешката история. На малката Сами й предстои да насочи поглед към Слънцето, а от другия край на увеличителната тръба я очаква изненада… Дали сме единствената цивилизация във Вселената? По-вероятно не, но ако получим космическо послание от далечни съседи, ще успеем ли да го приемем и разгадаем?

Leave a comment

Filed under astronomy, астрономия, космонавтика, литература, наука, научна фантастика, Literature, science, science fiction

Нова ера за неутринната астрономия: обсерваторията Ice Cube за пръв път регистрира избухване в далечна активна галактика


Откриването на космическите лъчи – Виктор Хес (Wictor Hess, http://www.srl.caltech.edu/personnel/dick/cos_encyc.html) през 1912 г. е направено от балон – за да бъде издигнат наблюдателят по-високо в атмосферата, която поглъща космическите лъчи преди те да достигнат до земната повърхност.
Неутринната астрономия е изправена пред противоположен проблем – материята е практически прозрачна за неутриното и то преминава през нея практически без да взаимодейства с атомите. Ако един неутринен детектор има размерите на човешко тяло, този детектор трябва да работи стотици хиляди години за да регистрира едно неутрино – въпреки че безброи неутрина ще преминат през тялото, без да го „забележат“ (нито пък то ще забележи тях). Затова се троят огромни неутринни детектори – някой от тях за цели езера, други са огромни планини от лед. IceCube (https://icecube.wisc.edu/) е вторият случай.
Неутриннинте обсерватории не „виждат“ самите неутрина. Вместо това те регистрират мюони – друг вид елементарни частици, които се образуват при (малковероятното) взаимодействие на неутрината с атомите.
До сега неутринната астрономия можеше да отговори на въпроса от къде идват неутрината само ако те произхождат от Слънцето, с едно изключение – през 1978 г. в Магелановите облаци избухна свръхножа, известна като 1987А. Тя беше достатъчно близко до нас и всички неутриннни детектори по света едновременно регистрираха пик в броя неутрина, който съвпадна с момента на избухването ѝ (общо – тридесетина неутрина, което показва колко е трудно да се прави неутринна астрономия).
Днес беше обявено, че неутринната обсерватория Ice Cube е регистрираал na 22.09.2017 g. друг уникален източник – блазар, известен с криптичното име TXS 0506+056. Блазарите са активни галактики, които имат в ядрата си свръхмасивни черни дупки (с маси милиони пъти по-големи от масата на слънцето), изхвърлящи в пространството мощни джетове. За разлика от другите активни галакитки, джетовете на блазарите са насочни точно към наблюдателя – което разбира се, е случайно. Блазарите излъчват в целия електромагнитен спектър – от рентгеновия до radio диапазoнa, и обикновено се характеризират със силна променливост.
През месец Септември миналата година блазраът TXS 0506+056 неочаквано станаl много по-ярък от обикновено – тогава до нас достига светлина, която е била излъчена преди милиони години. Първата детекция принадлежи на Ice Cube и понеже тази обсерватория има гигантски размери (1км х 1км х 1км), тя може да определя посоката, от която идват неутрината. Разбира се, понеже те са толкова млако, е било необходимо Ice Cube да „експонира“ месеци (събирайки 13 неутрина от 15-те милиона, който са преминали през детектора без да бъдат забелязани, защото не са взаимодествали с атомите от детектора). Няколко дни по-къано, на
28.09.2017 година, космическият гама-телескоп Fermi регистрира увеличаване на потока гама лъчи от същия блазар, а на 4.10.2017 година го забелязва и телескопът MAGIC, който регистрира черенсковското излъчване от високоенергийните частици, излъчени от същия блазар.
За пръв път източник на неутрино е асоцииран с източник на високоенргийни гама лъчи.
IceCube до сега е регистрирал десетки неутрина, по небето няма концентрация, с изключение на тази около блазара TXS 0506+056 (и преди това около свръхновата 1987А от преди 31 г.).
Това откритие показва, че неутринната астрономия е достатъчно „съзряла“ за да работи като „обикновената“ и да наблюдава отделни източници, а не само общия неутринен фон.
Съобщението за пресата е достъпно тук: https://icecube.wisc.edu/news/view/586
Статиятя в сп. „Science“: http://science.sciencemag.org/content/early/2018/07/11/science.aat1378/tab-pdf

Leave a comment

Filed under astronomy, астрономия, наука, science

Омуамуа (`Oumuamua) не е “мъртва” и се ускорява!


Чели ли сте нещо от Лем и “познавате” ли неговия герой, флегматичния астронавт Пиркс, който на всичко отгоре има склонност към философстване?

В “Разказа на Пиркс” се описва един изпълнен с премеждия полет, при който Пиркс става свидетел как огромен мъртъв кораб на извънземна цивилизация пресича Слънчевата система заедно с облак от малки каменни парчета. Всичко те летят по хиперболични орбити и предстои завинаги да я напуснат.

Ако това ви напомня нещо, то сигурно е защото сте чели или чули в новините от последните месеци за извънземня астероид Омуамуа (`Oumuamua; https://en.wikipedia.org/wiki/%CA%BBOumuamua). Особено интересно е, че той има странна форма – издължен е, и отношението на осите му е почти 1:1:6 (размерите му са приблизително 35х35х230 метра). Както на много от космическите кораби, които рисувахме по тетрадките, когато бяхме в училище…

Според последните наблюдения, астероидът се ускорява!

Но не бързайте да го обявявате за космически кораб. Подобен “финт” правят и кометите – реактивната сила се получава от отделянето на газове от повърхността на кометите. Снимки на подобни гейзери от близо може да се видят тук: http://blogs.esa.int/rosetta/2015/01/16/fine-structure-in-the-comets-jets/. Това е снимка на кометата Чурюмов-Герасименко, получени от космическата станция “Росета” на 22.11.2014 г.

От тези наблюдения научаваме, че и в другите планетни системи има аналози на нашите комети. Освен това, новите данни комбинирани с липсата на кометна опашка, дават основание да се предположи, че по време на дългото си пътешествие между звездите Омуамуа (`Oumuamua) може би е загубила малките прахови частици, от които са „направени“ опашките на обикновените комети и са останали са само по-големи прашинки. Те могат да предизвикат наблюдаваното ускорение, но не могат да направят „специалните“ ефекти – като въпросните огромни опашки – които сме свикнали да очакваме от кометите.

Прес-съобщението на Европейската южна обсерватория може да прочетете тук: http://eso.org/public/news/eso1820/ (накрая има списък с няколко интересни линка).

Препринт на статията, която беше публикувана в престижното научно списание “Нейчър”, също е достъпен в pdf: http://www.eso.org/public/archives/releases/sciencepapers/eso1820/eso1820a.pdf

Статия в Ню Йорк Таймс: https://www.nytimes.com/2018/06/27/science/oumuamua-comet-asteroid.html

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, научна фантастика, science, science fiction

„Гая“: Звезди на кантар – научно-популярна статия от Валентин Д. Иванов в Сп. „Осем“, брой 5, 2018 г.


Астрометрията се ражда като наука още преди новата ера, но едва хилядолетия по-късно, през XXI век, човечеството е на път да опознае галактиката, която обитава. Това е възможно, благодарение на малката колкото автомобил „Гая“. Специализираната астрометрична обсерватория улавя характеристиките на над 200 000 000 космически обекта, за да направи първата подробна триизмерна карта на Млечния път.
https://www.spisanie8.bg/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-8-%D0%B1%D1%80%D0%BE%D0%B9-52018-%D0%B3.html

 

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука

Софийски фестивал на науката – 10-13.05.2018, Грация и Гравитация XVIII: „Има ли живот на Марс?“ – 14.05.2018 и други предстоящи събития…


През следващите няколко дни в София Тех Парк ще се проведе фестивал на науката, с много научно-популярни доклади. Програмата му може да видите на:
https://www.britishcouncil.bg/sofia-science-festival/programme/events/table
Сред няколко доклада по астрономия, обръщам внимание на доклада, който ще изнесе Джули Новакова (Julie Novakova; https://www.julienovakova.com/about/) от Чехия, По образование тя е биолог, но е и писател-фантаст. Освен това, в понеделник, 14.05.2018 година, от 19:30 часа, тя ще участвува в осемнадесетото издание на семинара „Грация и Гравитация“, който ще се състои в Университетската обсерватория в Борисовата градина (https://www.uni-sofia.bg/index.php/novini/kalendar/graciya_i_gravitaciya_xviii_ima_li_zhivot_na_mars). В срещата ще участват още класическия и джаз виолист Валентин Геров (Квартет София) и писателката Мaги Уейди, която ще се включи от Лондон чрез видеовръзка. А във вторник, 15.05.2018 година Новакова ще бъде на обичайната среща на клуб „Иван Ефремов“ в общинския дом на културата „Средец“ (програма: http://sf-sofia.com/forum/index.php?f=6&rb_v=viewforum).

Leave a comment

Filed under astronomy, Bulgaria, България, астрономия, космонавтика, литература, наука, научна фантастика, Literature, science, science fiction

Последната граница сме самите ние – интервю за BG Север


Интервю с моя милост: http://bgsever.info/prepress/?p=38332

Leave a comment

Filed under astronomy, България, астрономия, литература, наука, научна фантастика, history, Literature, science, science fiction

На лов за гравитация – статия от Валентин Д. Иванов в Списание „8“ („Осем“), брой 3, 2018 г.


Моя статия се появи в новия брой на списание „Осем“. Ето я обявата на страницата на списанието:

https://www.spisanie8.bg/%D0%BC%D0%B0%D0%B3%D0%B0%D0%B7%D0%B8%D0%BD/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5/235-%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-8-%D0%B1%D1%80%D0%BE%D0%B9-32018-%D0%B3.html

Авторът е астроном в Европейската южна обсерватория в Чили. Той е сред учените, които прекарват безсънни нощи, изучавайки странен сигнал, продължаващ цели 100 секунди. На фона на дотогавашните с продължение едва няколко секунди, този е безпрецедентна и безценна находка. Теоретиците подсказват, че това е гравитационен сигнал, който може да произхожда от сливането на две неутронни звезди. Астрономите го наблюдават в реално време, макар че се е случило още когато на Земята са властвали динозаврите. Гравитационните вълни са смущения във време-пространствения континуум. Дават възможност чрез тях да се анализират явления от „бебешката” възраст на Вселената. На какви въпроси ще отговори гравитационната астрономия, този нов прозорец към света?

Може да си купите списанието в павилионите за вестници, а също и в някои книжарници.

Leave a comment

Filed under astronomy, наука, science

In Memoriam: Стивън Хокинг


Човекът си отиде, но работата му остава:

http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?db_key=AST&db_key=PHY&db_key=PRE&qform=AST&arxiv_sel=astro-ph&arxiv_sel=cond-mat&arxiv_sel=cs&arxiv_sel=gr-qc&arxiv_sel=hep-ex&arxiv_sel=hep-lat&arxiv_sel=hep-ph&arxiv_sel=hep-th&arxiv_sel=math&arxiv_sel=math-ph&arxiv_sel=nlin&arxiv_sel=nucl-ex&arxiv_sel=nucl-th&arxiv_sel=physics&arxiv_sel=quant-ph&arxiv_sel=q-bio&sim_query=YES&ned_query=YES&adsobj_query=YES&aut_logic=OR&obj_logic=OR&author=Hawking%2C+S.&object=&start_mon=&start_year=&end_mon=&end_year=&ttl_logic=OR&title=&txt_logic=OR&text=&nr_to_return=200&start_nr=1&jou_pick=NO&ref_stems=&data_and=ALL&group_and=ALL&start_entry_day=&start_entry_mon=&start_entry_year=&end_entry_day=&end_entry_mon=&end_entry_year=&min_score=&sort=CITATIONS&data_type=SHORT&aut_syn=YES&ttl_syn=YES&txt_syn=YES&aut_wt=1.0&obj_wt=1.0&ttl_wt=0.3&txt_wt=3.0&aut_wgt=YES&obj_wgt=YES&ttl_wgt=YES&txt_wgt=YES&ttl_sco=YES&txt_sco=YES&version=1

Връзката води към списък със статиите му в реферирани списания, сортирани по брой цитати (т. е. колко пъти една статия е споменавана то други статии). Без да е идеален критерий, броят цитати е мярка на значението, което една научна статия има за съответната област. Много малко физици имат 40+ хиляди цитата.

Leave a comment

Filed under astronomy, астрономия, наука, science

Триангулация и сътрудничество на небето и на земята – ЛИГО наблюдава сливане на две черни дупки нa 14.08.2018 година – GW170814


Не е нужно да сте гигант за да повлияете чрез собствената си гравитация на света около вас. Достатъчно е да ви има и вашата маса ще привлича всичко останало. Но ефектът е минимален. По-забележително ще бъде влиянието ви ако се движите, достатъчно е да крачите по коридора. Но отново, с риск да се повторя, ще кажа, че ефектът от вашето движение ще е минимален. Защото гравитацитационното ви въздействие зависи от масата ви. Помага, ако имате маса като на черна дупка.

Не много масивните черни дупки – с маси от няколко пъти до няколко десетки пъти по-големи от масата на Слънцето – са краен продукт от еволюцията на звездите (им и други, милиони пъти по-масивни от слънцето, но за тях – друг път). И понеже много звезди се раждат в двойни системи, не е за учудване, че понякога, макар и много рядко, две черни дупки могат да се окажат членове на една двойна система, обикаляйки около общия си център на масите.

Докато се движат по орбитите си, те губят енергия чрез излъчване на гравитационни вълни. Гравитационни вълни излъчва и Земята, докато обикаля около Слънцето, но тя губи много малко енергия и ефектът е незабележим; далеч преди радиусът земната орбита да “свие” забележимо, Слънцето ще се е превърнало в червен гигант, поглъщайки Земята и останалите вътрешни планети.

А при черните дупки е друго, като се слеят, настъпва взрив, подобно на свръхновите. ЛИГО е гравитационен детектор и регистрира пикът на гравитационната енергия, който се излъчва в последните няколко стотни от секундата, преди свръхновите да се слеят.

Наличието на три детектора позволява мястото в космоса, където се с случила експлозията, да се “триангулира”, по същия начин, по който акустичните детектори в артилерията определят положението на противниковата батарея.

Програмата ЛИГО е пример за това как една до вчера недостъпна наука става реалност благодарение на сътрудничеството на учени от много страни. Живеем в интересни времена – ЛИГО поставя началото на нова астрономия; това е сравнимо с началото на радиоастрономията през 1930-40те години или на рентгеновата астрономия през 1960-70те, но тук става дума не за нов диапазон от електромагнитния спектър, а за нов тип излъчване – гравитационното.

Предстоят интересни дни, експлозията се е случила достатъчно наблизо (в космически мащаби, разбира се) и мястото ѝ на небето е известно с приемлива точност (около стотина квадратни градуса, което за съвременните широкоъгълни телескопи не е безнадеждно голяма площ; тя лесо може да бъде заснета, само за няколко нощи). за да има вероятност експлозията да бъде “видяна” и в електромагнитния диапазон (оптика, инфрачервена радиация).

Съобщението за пресата и други новини за явлението може да видите на: http://www.virgo-gw.eu/

Leave a comment

Filed under astronomy, астрономия, наука, science

Големите инфраструктурни проекти в астрономията


Европейската южна обсерватория (ESO) в момента строи най-големия от следващото поколение телескопи – 39-метровия ELT (Extremely Large Telescope). Очаква се общата му стойност да е около 1.1 милиарда. Какви са неговите предшественици?
Току що ми попадна книгата на “Дългият космически век” (The Long Space Age: Yale University Press, 2017) от Александър Макдоналд (Alexander MacDonald), Подзаглавието ѝ е: “Икономическа основа на космическите изследвания от колониална Америка до Студената Война” (The Econonmic Origins of Space Exploration from Colonial America to the Cold War) и както се разбира от него, авторът е подходил по-широко към понятието космически изследвания като е включил в тях и астрономията – която по същество не е нищо друго, освен дистанционно изследване на космоса.
Нещо повече, когато се говори за икономиката на космическите изследвания хората обикновено започват от 30-те години с работата на фон Браун за военните в Германия от една страна, и Корольов и Цандер в Съветския съюз, от друга.
В първата глава на книгата най-интересна за мен е една таблица, в която са събрани по-големите американски обсерватории от деветнадесети и началото на двадесети век. За всяка от тях, започвайки от Йейлската (1828), са дадени годината на построяването им, номиналната цена в долари от онова време, цената в долари, коригирана към 2015 година грубо казано за инфлация на стойността на труда (т. нар. production workers compensation) и цената пак в долари, коригирана пак към 2015 година, но този път като процент от брутния национален продукт. За Йейлската обсерватория стойностите са съответно: 1828 – $1200 $764,000 – $24,100,000. Открояват се Харвардската обсерватория и Лик, съответно с: 1876 – $50,000 – $26,800,000 – $530,000,000 и 1876 – $700,000 – $188,000,000 – $1,510,000,000. Избрах тези две, защото са известни дори сега, и влизането им в действие е било малка революция в науката.
Разбира се, освен номиналната първоначална стойност, тези оценки сдържат неопределености, свързани с изчисляването на корекциите, така че въпреки поправките, сравнението може да бъде само приблизително.
Малко цитати от Уикипедия. Космическият телескоп Хубъл първоначално има проектна цена от $400,000,000, но до момента на изстрелването му тя нараства до $4,700,000,000, а за повече от двадесет години експлоатация разходите по него са надминали $10,000,000,000 (не е ясно дали тези стойности са коригирани за инфлация или са номинални). Космическият телескоп “Кеплер”, изстрелян през 2009 година, струва $550,000,000. Инфрачервеният телескоп “WISE”, също изстрелян през 2009 година, струва около $300,000,000 и експлоатацията му добавя към тази сума още 5,000,000 всяка година.
“Хъбъл”, макар технологично да се родее с шпионските спътници, беше откровение като астрономически уред и по право може да бъде сравняван с обсерваториите в Йейл и Хардвард., “Кеплер” и “WISE” са по-скоро “рутинни” мисии, те принадлежат към онази група от обсерватории, която е представена в таблицата, но която аз пренебрегвам тук за краткост.
Набиват се в очи няколко извода. Първо, Съединените Щати са се нуждаели от половин век след извоюването на независимостта си за да започнат да строят инфраструктура за астрономия. Забележете, че по онова време астрономията не приложна наука, свързана с такива важни области като картографията и измерването на времето. За сравнение, България строи първата си обсерватория – тази на Софийския Университет, през 1894 година, 16 години след като извоюва независимостта си. За съжаление не можах да намеря информация за стойността на нашата обсерватория.
Второ – и това се разбира като се разгледа цялата таблица, Щатите строят инфраструктурни проекти, които изнасят науката на ново, по-високо ниво приблизително веднъж на всеки три-пет десетилетия (следващите са Маунт Уилсън – 1910 и Паломар – 1928), макар че към края на периода честотата се повишава докато Втората Световна Война не нарушава тази “цикличност”.
Трето, наред с “големите” проекти, науката има нужда от пирамидална инфраструктура. Съдейки по таблицата, за един век Щатите са построили около четиридесет значими елемента на астрономическата си инфраструктура.
В първата глава на книгата си Макдоналд не казва нищо повече от онова, което Алиса добре знае – има места и моменти, в които за да стоиш на място, трябва да тичаш с всички сили. Науката и в частност астрономията е такова място. Строителството на големи инфраструктурни проекти, чието създаване често изисква човек да вложи половината или повече от професионалния си живот, са именно такова надбягване.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

За навика да се задават въпроси и за най-големия телескоп в света – полагане на първия камък


Вчера, на 26.05.2017 в Чили, на един връх в Андите, наречен Армазонес, беше положен първият камък в основите на ELT. Това е съкращение от Extremely Large Telescope, което буквално преведено означава Екстремално Голям Телескоп. Строи го ESO (Европейската Южна Обсерватория) – консорциум от петнадесет европейски страни, плюс Бразилия и Чили. За съжаление България не е член на ESO.

Телескопът ще има диаметър на главното огледало 39 метра, което ще го направи най-големия в света. Подвижната му част с огледалата и носещата конструкция ще тежи около три хиляди тона, а куполът – около пет хиляди тона.

Очаква се телескопът да помогне в търсенето на отговори на такива фундаментални въпроси като какви са атмосферите на планетите около други звезди, с каква скорост се разширява Вселена и каква е едромащабната ѝ структура. Със сигурност ще ни поднесе и изненади.

Очаква се ELT да влезе в експлоатация през 2024 година, така че има шанс един ден да го използвам.

В основата на телескопа беше положена капсула с копие на научната обосновка на проекта. Ще бъде интересно след години да се види дали той е оправдал очакванията. Разбира се, този документ е публикуван и няма нужда да се чака отварянето на капсулата след кой знае колко години. В нея се намира и един любопитен плакат със снимките на всички служители на обсерваторията.

Телескопът ще струва малко над един милиард евро. Това е приблизително цената, която биха платили всичките страни членки на обсерваторията за да си купят по един чисто но нов и добре екипиран Грипен. Или половин чисто нож Еурофайтър.

Според страницата на НСИ през 2015 година България е похарчила около 117 милиона лева (около 60 милиона евро) от бюджета за изследвания в областта на природните науки. Това е приблизително равно на 1/17 от стойността на ELT. Бюджетните средства за наука в България не са единствено за астрономия, но и, разходите за телескопа се разпределят върху едно ил дори две десетилетия. С други думи, участието в един проект от такъв мащаб не е немислимо дори за малка страна като нашата.

Ще напълни ли ELT нечия чиния? – Това, разбира се, е главният въпрос, когато става дума за харчене на бюджетни средства, и не само за астрономията, а за която и да е фундаментална наука.

Колкото и да е неочаквано, аз мога да дам положителен отговор. И то не става дума за чинията на астрономите – в Европейската Южна Обсерватория работят общо около осемстотин човека. Астрономи са по-малко от стотина. В целия свят има общо около 10,000 астрономи (за справка, макар и с малко стари данни: https://arxiv.org/pdf/0805.2624.pdf); около 90 процента са университетски преподаватели и получават заплати не за изследователска дейност, а за да преподават природни науки на студентите по социология, педагогика, философия и пр. (странно, но по света се смята, че социалните работници и учителите по литература трябва да знаят нещо за материалния свят).

Механизмът за пълнене на чиниите може би е малко неочакван – той работи чрез срещата с интригуващи научни резултати и с начините на достигането до тях, които на свой ред събуждат у хората желанието да задават въпроси. А създаде ли се веднъж навик да се задават въпроси, резултатите могат да бъдат страшни и чудесни, защото хората ще питат навсякъде и за всичко: Какво пише с малки букви на етикета на стоката, която ми рекламират? От къде кандидатът Х ще намери средства за да повиши пенсиите? И т. н.

Колкото повече въпроси, толкова по-добре.

Съобщението на ESO за пресата, с много картинки, може да се види тук: http://www.eso.org/public/news/eso1716/

Leave a comment

Filed under astronomy, астрономия, наука, science

ESO press release – a pretty picture from “my” survey


The survey is not mine, it really belongs to Maria Rosa Cioni and the entire team that worked on it. Maria Rosa is the person who came up with the idea to study the star formation history of the Magellanic clouds (two nearby galaxies: Large Magellanic Cloud, a.k.a. LMC – https://en.wikipedia.org/wiki/Large_Magellanic_Cloud and Small Magellanic Cloud, a.k.a. SMC – https://en.wikipedia.org/wiki/Small_Magellanic_Cloud) with multi-epoch multi-band imaging observations. She organized the team to do this, and I was lucky to join in. You can learn more about the survey here: http://star.herts.ac.uk/~mcioni/vmc/

This project turned out to be very important, especially for the SMC, because despite being a relatively minor galaxy (e.g. with respect to our own Milky Way), it is extended along the line of sight and it contains a lot of dust which makes it difficult to investigate the content and the structure of the SMC. Our survey has the advantage over previous surveys to observe in the near-infrared spectral region which is less affected by dust absorption than the optical.

The ESO press release with some nice images (for a zoomable version go to: https://www.eso.org/public/images/eso1714a/zoomable/) and a video is available here: http://www.eso.org/public/news/eso1714/

Enjoy!

Leave a comment

Filed under astronomy, астрономия, наука, science

Дупки в небето над Паранал


Прикачената снимка на четирите лазера, всеки с мощност от около 20 вата, с които се създават изкуствени звезди над ВЛТ е направена преди два дни с патетичния ми джобен цифров фотоапарат-сапунерка. Снимка, направена с професионален фотоапарат може да се види тук: https://www.eso.org/public/teles-instr/vlt/vlt-instr/4lgsf/

Отстрани този експеримент наистина прилича на опит за пробиване на дупки в небето. Това е шега, разбира се. Идеята е не да се пробие небето, а да се „запалят“ в него няколко ярки изкуствени звезди, които да се ползват за коригиране на деформациите на вълновия фронт, които атмосферата над нас създава.

Деформация, вълнов фронт…

За какво става дума?

Представете си една звезда. За простота нека да разгледаме само светлината, която звездата излъчва в един безкрайно къс интервал – това ще е къс светлнинен импулс. Какво се случва с него? – Той се разпространява под формата на идеална кръгла сфера, без деформации, с център съвпадащ със центъра на звездата. Повърхността на сферата – която е именно споменатият по-нагоре вълнов фронт – се разширява със скоростта на светлината и продължава да си е идеално сферична (ефектите от разредения материал в междузвездното пространство са пренебрежими), докато не се сблъска с въздуха в … земната атмосфера.

Земната атмосфера, ни по-малко, ни повече, прави възможен живота на Земята, но за нас астрономите тя е досадна пречка. Проблемът ни е, че тя е динамична – в нея има слоеве в различно налягане и температура, въздухът се движи, плътността му се сменя и заедно с всички тези процеси се менят и оптичните му свойства. Спомнете си, как трептят звездите, когато ги наблюдаваме близо до хоризонта или как се мени формата на морското дъно, когато го гледате през плискащата се вода…

Същото се случва и със звездната светлина, когато навлезе в атмосферата: повърхността на идеалната сфера се нагърчва и далечните звезди вече не изглеждат като точки, а като малки дискове. Грубо казано, размерът на тези дискове се нарича астрономическо качество на изображението (seeing), и е важна характеристика на мястото, където се строят обсерваториите. Според това изискване Чилийските Анди, Хаваите и Южният полюс са някои от местата, най-подходящи за строеж на обсерватории.

За съжаление дори и там атмосферата изиграва своята роля, а да се изкарват телескопите в космоса, над нея, е скъпо удоволствие (за справка космическият телескоп Хъбъл струва около 2.5 милиарда долара, а всеки един от четирите ВЛТ – около 80 милиона евро; за поддръжката д не говорим – един ремонтен полет до Хъбъл струваше около половин милиард, а годишната издръжка на 4-те телескопа на Паранал – тук не броя по-малките – е около двадесет пъти по-евтина).

Но как да направим така, че наземните телескопи да „виждат“ толкова ясно, както космическите?

През 1953 година американският астроном Хоръс Бабкок предлага да се използва деформируемо огледало, чиято форма се контролира с компютър толкова бързо, че може да проследява „трептенето“ на звездите и да ги „заковава“ на едно място, така че да изглеждат като точкови източници, а не като дискове, каквито ги прави атмосферата (може да видите как изглежда изображението на една звезда без и с използване на адаптивна оптика: https://en.wikipedia.org/wiki/File:Ao_movie.gif).

Адаптивната оптика не бива да се бърка с активната оптика, която само компенсира деформациите на големите телескопни огледала заради неравномерното им натоварване, включително и от собственото им тегло.

Трябва да минат десетилетия, преди да се появят две технологии, които да направят възможна адаптивната оптика: достатъчно бързи компютри и достатъчно чувствителни детектори (по времето на Бабкок астрономите използват фотографски филми и плаки, които регистрират едва няколко процента от падащите върху тях фотони; съвременните цифрови детектори регистрират 90-95 процента от фотоните).

Първи използват адаптивната оптика американските военно-въздушни сили по времето на Студената война за да наблюдават Съветски спътници (интересна статия за това, но на английски: http://www.npr.org/2013/06/24/190986008/for-sharpest-views-scope-the-sky-with-quick-change-mirrors).

През 90-те години постепенно новата технология става цивилна и започва да се използва в астрономията. Тя обаче има едно изискване – да се наблюдават ярки обекти, чието „трептене“ се проследява и коригира. Уви, интересните звезди не са така ярки като съветските спътници. В началото това ограничава астрономическите приложения на адаптивната оптика до изследване на околностите на ярки звезди – например за да се търсят около тях планети – точно по този метод преди повече от десет години беше наблюдавана за пръв път планета в друга слънчева система именно в нашата обсерватория (https://www.eso.org/public/news/eso0428/).

Не знам на кого принадлежи идеята да се използва лазер, за да се заобиколи това ограничение, но тя се свежда до следното – високо в атмосферата, на около 20-30 километра има слой от натрий. Ако насочим нагоре натриев лазер, светлината излъчена от него ще бъде погълната от натриевите атоми в този слой и ще бъде преизлъчена, но във всички посоки; част от преизлъчената светлина ще се върне към нас и в резултат ще се получи изкуствена звезда.

Четирите лъча от снимката създават точно такива ярки изкуствени звезди. А са четири, за да може да се коригира качеството на астрономическото изображение върху по-голяма площ на небето. Апаратурата все още се изпробва. Една от първите й задачи ще бъде да наблюдава центъра на нашата Галактика, към който в момента се приближава голям газов облак. Той едва ли ще е достатъчен за да направи от Млечния път истинска активна галактика (за щастие), но наблюденията на процесите, които ще съпътстват преминаването му от там със сигурност ще ни кажат нещо интересно за нашия дом, Млечния Път.

sam_2795a

Leave a comment

Filed under astronomy, астрономия, наука, science

Българска популяризация на науката: есе от Светослав Александров в The Space Rreview за свободния достъп до изображенията от космоса


Една картинка се равнява на хиляда думи, твърди известната английска поговорка. Картинките от космоса сигурно са еквивалентни на още повече думи, защото ни пренасят в светове, които нямаме (и сигурно скоро няма да имаме) възможността да докоснем и усетим със собствените си сетива. Есе за значението на свободния достъп и по-специално за начина, по който се организира този достъп до снимките от космическите станции, написано от българина Светослав Александров, беше публикувано в The Space Rreview: http://thespacereview.com/article/3052/1

За самия Светослав Александров може да научите повече от блога му (https://svetlyoalexandrov.wordpress.com/) и от страницата му във Фейсбук (https://bg-bg.facebook.com/svetlyoalexandrov/).

Забележете, че есето е предизвикало доста оживена дискусия.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Видео-доклади за космическия телескоп „Джеймс Уеб“


Институтът (Space Telescope Science Institute; http://www.stsci.edu/portal/; https://en.wikipedia.org/wiki/Space_Telescope_Science_Institute), който в момента „кара“ космическия телескоп „Хъбъл“, и през Октомври 2018 предстои да „подкара“ космическия телескоп „Джеймс Уеб“ е подготвил няколко доклада за новия телескоп и те са достъпни под формата на видеозаписи и презентации: https://confluence.stsci.edu/display/JWSTLC/JWST+Community+Webinars

Серията е започнала през месец Януари.2016 година, следващият доклад е на 20.Септември.2016. Докладите са на английски. Траят по около един час и нивото е като за професионални астрономи или за напреднали любители. От друга страна това са записи и ако човек не разбира нещо, може да спре записа, да прослуша отново неясната част и дори да потърси превод или обяснение в мрежата. Сред докладчиците са научните ръководители на моята дисертация от университета в Тюсон.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Надолу по спиралата, която води нагоре . Ревю на романа Coming Home („Завръщане в къщи“) от Джак Макдивит


Четете моето представяне на романа в електронното списание „Сборище на трубадури“: http://trubadurs.com/2016/09/02/coming-home-by-jack-mcdevitt-review-20160902/

Leave a comment

Filed under astronomy, Book Review, book reviews, литература, научна фантастика, ревюта на книги, science fiction