Tag Archives: ЕСО

За навика да се задават въпроси и за най-големия телескоп в света – полагане на първия камък


Вчера, на 26.05.2017 в Чили, на един връх в Андите, наречен Армазонес, беше положен първият камък в основите на ELT. Това е съкращение от Extremely Large Telescope, което буквално преведено означава Екстремално Голям Телескоп. Строи го ESO (Европейската Южна Обсерватория) – консорциум от петнадесет европейски страни, плюс Бразилия и Чили. За съжаление България не е член на ESO.

Телескопът ще има диаметър на главното огледало 39 метра, което ще го направи най-големия в света. Подвижната му част с огледалата и носещата конструкция ще тежи около три хиляди тона, а куполът – около пет хиляди тона.

Очаква се телескопът да помогне в търсенето на отговори на такива фундаментални въпроси като какви са атмосферите на планетите около други звезди, с каква скорост се разширява Вселена и каква е едромащабната ѝ структура. Със сигурност ще ни поднесе и изненади.

Очаква се ELT да влезе в експлоатация през 2024 година, така че има шанс един ден да го използвам.

В основата на телескопа беше положена капсула с копие на научната обосновка на проекта. Ще бъде интересно след години да се види дали той е оправдал очакванията. Разбира се, този документ е публикуван и няма нужда да се чака отварянето на капсулата след кой знае колко години. В нея се намира и един любопитен плакат със снимките на всички служители на обсерваторията.

Телескопът ще струва малко над един милиард евро. Това е приблизително цената, която биха платили всичките страни членки на обсерваторията за да си купят по един чисто но нов и добре екипиран Грипен. Или половин чисто нож Еурофайтър.

Според страницата на НСИ през 2015 година България е похарчила около 117 милиона лева (около 60 милиона евро) от бюджета за изследвания в областта на природните науки. Това е приблизително равно на 1/17 от стойността на ELT. Бюджетните средства за наука в България не са единствено за астрономия, но и, разходите за телескопа се разпределят върху едно ил дори две десетилетия. С други думи, участието в един проект от такъв мащаб не е немислимо дори за малка страна като нашата.

Ще напълни ли ELT нечия чиния? – Това, разбира се, е главният въпрос, когато става дума за харчене на бюджетни средства, и не само за астрономията, а за която и да е фундаментална наука.

Колкото и да е неочаквано, аз мога да дам положителен отговор. И то не става дума за чинията на астрономите – в Европейската Южна Обсерватория работят общо около осемстотин човека. Астрономи са по-малко от стотина. В целия свят има общо около 10,000 астрономи (за справка, макар и с малко стари данни: https://arxiv.org/pdf/0805.2624.pdf); около 90 процента са университетски преподаватели и получават заплати не за изследователска дейност, а за да преподават природни науки на студентите по социология, педагогика, философия и пр. (странно, но по света се смята, че социалните работници и учителите по литература трябва да знаят нещо за материалния свят).

Механизмът за пълнене на чиниите може би е малко неочакван – той работи чрез срещата с интригуващи научни резултати и с начините на достигането до тях, които на свой ред събуждат у хората желанието да задават въпроси. А създаде ли се веднъж навик да се задават въпроси, резултатите могат да бъдат страшни и чудесни, защото хората ще питат навсякъде и за всичко: Какво пише с малки букви на етикета на стоката, която ми рекламират? От къде кандидатът Х ще намери средства за да повиши пенсиите? И т. н.

Колкото повече въпроси, толкова по-добре.

Съобщението на ESO за пресата, с много картинки, може да се види тук: http://www.eso.org/public/news/eso1716/

Advertisements

Leave a comment

Filed under astronomy, астрономия, наука, science

Планета около звездата Проксима в съзвездието Центавър: запис на интервю с обяснение на резултата от предаването “Преди всички” на програма „Хоризонт“


Журналистката Ирина Недева отрази откритието на новата планета в предаването “Преди всички” на 25.08.2016. Запис на фрагмента може да се чуе тук: http://bnr.bg/horizont/post/100730227/nai-blizkata-do-nas-ekzoplaneta-e-na-razstoanie-malko-nad-4-svetlinni-godini-i-obikala-okolo-zvezdata-proksima

Leave a comment

Filed under astronomy, астрономия, наука, science

Екзопланета в задния ни двор: проектът „Бледа Червена Точка“ докладва за откритие на планета около звездата Проксима в съзвездието Центавър, най-близката звезда до слънчевата система


Проектът и крилатата фраза: В края на 80-те години на миналия век гениалният популяризатор на астрономията Карл Сейгън предлага да се използва една от космическите станции „Вояджер“, които вече са пресекли орбитите на Юпитер и Сатурн, за да се направи снимка на Земята. Идеята е осъществена в началото на 1990 година (тя може да се види тук: https://en.wikipedia.org/wiki/Pale_Blue_Dot). По-късно Сейгън коментира, че „всяко човешко същество, който някога е живяло, е изживяло живота си“ на тази бледа синя точка.

Създателите на проекта „Бледа червена точка“ (https://palereddot.org/), макар и активни учени-изследователи, също са и популяризатори. Те променят символичната фраза на Сейгън за да отразят правилно червения цвят на най-близката до Слънцето звезда – Проксима. Проксима е най-близкия до Слънчевата система член на система от три звезди, заедно с много по-известната двойна звезда Алфа Центавър А и Б. Проксима е пренебрегната от вниманието на широката публика, вероятно защото не е ярка – макар да е близка до нас, тя е слаба и студена червена звездичка и принадлежи към клас, който астрономите наричат М. За разлика от Алфа Центавър, Проксима е невидима за човешкото око – в оптичния диапазон, в който са чувствителни нашите очи, тя е приблизително сто пъти по-слаба, от най-слабите звезди, който хора с отлично зрение могат да видят.

Проектът „Бледа червена точка“ е замислен като съчетание на научно и популяризаторско начинание: на страницата му е отразен в подробности процесът на правене на наука, от идеята, през наблюденията и тяхната обработка, до подготовката и публикуването на научната статия (https://www.eso.org/public/announcements/ann16002/).

Методът: Проектът „Бледа червена точка“, ръководен от Гуем Англада-Ескуде от Университета Куин Мери в Лондон (http://astro.qmul.ac.uk/directory/g.anglada; https://www.researchgate.net/profile/Guillem_Anglada-Escude), използва добре известния метод на радиалните скорости. С помощта точно на този метод през 1995 година швейцарските астрономи Майор и Коло откриха първата екзопланета около звезда от слънчев тип – 51 Пегас б (https://en.wikipedia.org/wiki/51_Pegasi_b).

Методът не изисква да се „види“ директно една планета, достатъчно е да се „вижда“ звездата. Използва се факта, че звездата и нейната планетата се движат по орбити около общ център на масата, който не съвпада с центъра на звездата. Разбира се, орбитата на звездата е много по-малка от орбитата на планетата. При движението по орбитата си звездата се отдалечава или приближава към нас, при което нейният спектър се измества заради ефекта на Доплер. Съвременните астрономически инструменти са в състояние да регистрират това отместване.

В чисто практически аспект методът се заключава в получаване на множество спектри през достатъчно дълъг интервал от време, който трябва да покрие поне веднъж периода на планетата. После се измерва радиалната скорост на звездата от всеки спектър, и по получената крива на скоростите се определят периода и амплитудата на кривата на радиалната скорост, а от там, по закона на Кеплер, се определя отношението между масите на планетата и на звездата.

Анимация, която добре илюстрира метода може да се види тук:

http://images.google.de/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2F3%2F33%2FESO_-_The_Radial_Velocity_Method_%28by%29.jpg&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDoppler_spectroscopy&h=2094&w=2374&tbnid=gLybRk9ZRxgSuM%3A&docid=KwG2Ep3qqhCr6M&ei=QG69V5DvCIfVsAHnna7oDw&tbm=isch&iact=rc&uact=3&dur=1031&page=1&start=0&ndsp=36&ved=0ahUKEwiQj6nc49nOAhWHKiwKHeeOC_0QMwgcKAAwAA&bih=1076&biw=1379

Откритието: около Проксима има планета, с маса 1.4 пъто по-голяма от масата на Земята. Планетата се движи по орбита с период 11.2 дни и радиус 0.05 астрономически единици (около двадесет пъти по-близо до Проксима, отколкото Земята е до Слънцето; една астрономическа единица е равна на радиуса на земната орбита). Планетата се намира близо до външната граница на обитаемата зона на Проксима и получава от своята звезда около 65% от енергията, която Земята получава от Слънцето; не е изненадващо, че новата планета е по-студена от Земята – температура на повърхността ѝ е около 235 градуса по скалата на Келвин, или четиридесет градуса под нулата по скалата на Целзий. По този параметър новата планета по-скоро прилича на Марс.

Но това не е цялата история – много вероятно планетата има период на денонощно въртене, равен на орбиталния период, т.е. тя винаги е обърната към звездата с една и съща страна (подобно на това как Луната винаги е обърната към Земята с една и съща страна). Следователно, на повърхността на планетата има голяма температурна разлика между страните с вечен ден и с вечна нощ.

Друго усложнение идва от възможността планетата да има атмосфера – ако тя е достатъчно плътна, парниковият ефект е в състояние да повиши температурата на повърхността ѝ над точката на замръзване на водата.

Кривата на радиалната скорост намеква – това е най-подходящата дума – за наличието на още един обект в системата на Проксима, защото след премахването на сигнала от новооткритата планета, остава още един сигнал, под формата на бавна промяна на лъчевата скорост на звездата. Ако наличието на това тяло бъде потвърдено, то ще има период, много по-голям от два месеца (колкото е продулжила последната кампания с HARPS).

Анализ:

– Откриването на планета почти в обитаемата зона на най-близката до Слънцето звезда е епохално откритие. Ако съществуването на планетата се потвърди, тя ще е най-близката до нас екзопланета. Тя има и потенциала да бъде най-близката обитаема планета до нас. Това са две „най“, който няма как да бъдат надминати, просто защото няма друга звезда, по-близка до Слънцето от Проксима. Наличието на планети от земен тип около Слунцето и най-близката до него звезда не е вероятно, освен ако планетите от земен тип не са широко разпространени във Вселената.

– В известен смисъл, откриването на планета около Проксима не е изненада, защото е известно, че на всяка звезда от М клас се пада поне по една планета; проблемът е, че част от М звездите имат по няколко планети, а друга част – нямат никакви (или са толкова малки, че все още не сме ги открили). Също така, като правило планетите в системите на М звездите са малки, не по-големи по маса от Нептун (който е 17 пъти по-тежък от Земята и 19 пъти по-малко масивен от Юпитер), така че и ниската маса на планетата не е изненада.

– Още от сега може да се каже, че планетата вероятно наистина съществува, главно защото сигналът, който тя произвежда, може да се проследи в наблюдения, които покриват почти десетилетие. По-рано той е бил приписван на активността на звездата, но този дълъг период, в който сигналът продължава неизменно да се наблюдава, изключва възможността той да е породен от активност на звездата, защото петната, които са причината да се „откриват“ несъществуващи планети обикновено не са стабилни за толкова дълго време. Нещо повече, паралелно с измерването на радиалната скорост, астрономите от проекта „Бледа червена точка“ са проследили и яркостта на Проксима, защото петната биха довели и до наличието на периодичен сигнал и в яркостта на звездата. Както се очаква за такава студена звезда, яркостта на Проксима се мени, но не със същия период като на новооткритата планета, което е допълнителен аргумент, че новата планета наистина съществува.

Въпроси и отговори:

– Има живот на новооткритата планета? – Не е известно.

Традиционно „обитеаема зона“ около една звезда е зоната, в която равновесните температурни на планетите, които я обикалят, ще са такива, че да позволят наличието на течна вода, т.е. ще са между нула и сто градуса Целзий. За Слънцето, което е много по-горещо и дава на планетите си повече енергия, обитаемата зона е по-далече и се намира приблизително между орбитите на Венера и Марс, но Венера е вече твърде гореща, а Марс е твърде студен. За Проксима в тази зона ще се намират планети с периоди между около 4 и 14 дни, но тези граници са размити, защото тяхното положение зависи не само от енергията, която планетите получават от звездата, а и от размера и масата на самите планети, от вида на повърхността и от характера на атмосферата им. В това отношение фактори са: отражателната способност, т.е. доколко повърхността на планетата отразява и доколко поглъща светлината на звездата; дали има парников ефект – ако Марс беше по-голям, на него би могъл да се поддържа парников ефект и съответно да има условия за наличие на течна вода.

Условията за обитаемост не зависят само от наличието на течна вода. Студени звезди от спектрален клас М като Проксима имат активни атмосфери. Това означава, че повърхността им често е покрита с петна, много повече и много по-големи от слънчевите петна. Петната са свързани с активност с чести избухвания и повишено ултравиолетово и рентгеново излъчване. С други думи, повърхността на планетата е бомбандирана със смъртоносна (за нас) радиация. Подобни обстоятелства правят живот – още веднъж подчертавам, живот като нашия – лошо приспособен за тази планета.

– Можем ли да посетим новооткритата планета? – Теоретично, да. Но да не забравяме, че Проксима е толкова далече от нас, че светлината от нея достига до Слънцето за около 4.2 години. Със съвременните химически ракетни технологии изпращането дори на автоматична станция до там ще изисква 70-80 хиляди години. Проектът Старчип (http://breakthroughinitiatives.org/Initiative/3; https://en.wikipedia.org/wiki/StarChip_%28spacecraft%29), който предвижда пътуване със скорост 15-20% от скоростта на светлината, в случай на успех, може да изпрати автомати до Проксима за 20-30 години. На този етап за пилотирана експедиция е трудно да се правят каквито и да е предположения.

– Може ли да видим новооткритата планета? Какво е това откритие без снимка? – За съжаление планетата е прекалено близо до звездата, за да бъде наблюдавана пряко: при радиус на орбитата 0.05 астрономически единици (една астрономическа единица е равна на радиуса на земната орбита, около 150 милиона километра), се вижда от разстояние от 1.3 парсека (около 4.2 светлинни годни) като ъгъл от около 0.04 ъглови секунди (1 ъглова секунда е равна на 1/3600 част от градуса). Най-добрите от съвременните телескопи могат да разграничат два обекта само ако те са на ъглово разстояние по-голямо от около 0.1 ъглова секунда и то ако яркостите им не са прекалено различни. Обаче следващото поколение инструменти, особено космическите коронографи вероятно ще могат. Нещо повече, много е вероятно откриването на тази планета ще ускори построяването на подобни инструменти, така че не е изключено след едно или две десетилетия да разполагаме със снимки на новооткритата планета.

– Каква е връзката на ЕСО (Европейската Южна Обсерватория; http://www.eso.org/public/) с това откритие? – Проектът „Бледа червена точка“ използва два спектрографа на ЕСО, за да мери радиалната скорост на Проксима: UVES (http://www.eso.org/sci/facilities/paranal/instruments/uves.html) и HARPS (http://www.eso.org/sci/facilities/lasilla/instruments/harps.html). Фотометричните наблюдения използват други, по-малки телескопи в Чили.

– Вие имате ли нещо общо с това откритие? – Не, аз не съм свързан по никакъв начин с проекта „Бледа червена точка“ и не сътруднича с нито един от участниците в него по никакви други проекти; служител съм на ЕСО, но работата ми не е свързана с нито един от използваните инструменти. С други думи, нямам конфликт на интереси.

Материали за пресата:

– съобщение за пресата на ЕСО: http://www.eso.org/public/news/eso1629/?lang и в „детска“ версия: http://www.eso.org/public/news/eso1629/kids/?lang

– научна статия с сп. Nature: http://www.eso.org/public/archives/releases/sciencepapers/eso1629/eso1629a.pdf

– видео с обяснения: https://www.eso.org/public/videos/eso1629a/

Любопитно: Проксима често се появява в научно-фантастичните произведения: https://en.wikipedia.org/wiki/Stars_and_planetary_systems_in_fiction#Proxima_Centauri_.28Alpha_Centauri_C.29

Leave a comment

Filed under astronomy, астрономия, наука, science

Астрономия, статия на деня: космически телескопи за жълти стотинки – откритията на космическите телескопи МОСТ и БРИТЕ и ползата от развитието на космически технологии


Трудно е да се свържат жълтите стотинки с космическите телескопи. За сравнение, през последното десетилетие годишният бюджет на Европейската Южна обсерватория (ЕСО), където работя, се колебае около 120-140 милиона евро. За 20 години експлоатация на космическия телескоп Хъбъл (диаметър на главното огледало 2.4 метра) са похарчени около 10 милиарда долара, което прави около 500 милиона долара на година. Оценките за следващия голям проект на НАСА – космическият телескоп Джеймс Уеб (диаметър на главното огледало 6.5 метра), който се очаква да работи в продължение на 5 или 10години – са около 5-6 милиарда долара (тези оценки могат да се видят тук: http://www.nasa.gov/pdf/499224main_JWST-ICRP_Report-FINAL.pdf). Даже сравнително малкият инфрачервен космически телескоп Спитцер (диаметър на главното огледало 0.6 метра) се нуждаеше от около 700 милиона (http://www.spitzer.caltech.edu/info/107-Innovations).

Даже без да взимаме под внимание, че ЕСО има четири 8-метрови телескопа, три 4-метрови и множество други по-малки (и повечето телескопи имат по няколко инструмента), правенето на астрономия от космоса е на порядъци по-евтини, отколкото от Земята.

И все пак космическата астрономия се развива, макар че разходите за нея са значителни. Причината е проста – от космоса може да се получат наблюдения, които не са възможни с наземни телескопи. Първо, земната атмосферата е непрозрачна – тя почти напълно поглъща фотоните с високи енергии, в ултравиолетовата и в инфрачервената области – по тази причина рентгеновите наблюдения и наблюденията в гама лъчите се правят почти изключително от космоса (https://en.wikipedia.org/wiki/XMM-Newton, https://en.wikipedia.org/wiki/Solar_and_Heliospheric_Observatory, https://en.wikipedia.org/wiki/Swift_Gamma-Ray_Burst_Mission, за по-пълен списък: https://en.wikipedia.org/wiki/List_of_space_telescopes; този списък не включва инструментите, изстрелвани със суб-орбитални ракети но за тях – друг път).

Второ, земната атмосфера е нестабилна. Въздухът се движи, променя се налягането му и заедно с това – оптичните му свойства. Това води до „размиване“ на звездните изображения, които вместо почти идеални точки, се превръщат в дискове. Разбира се, размерът на тези дискове е незабележими за човешкото око, но той е пагубен за астрономическите инструменти, защото намалява разделителната им способност – най-просто казано, способността им да разделят две близко разположени звезди. Проблемът е особено актуален когато се търсят планети около ярки звезди, защото звездното изображение става толкова голямо, че „скрива“ планетите от наблюдателите.

Трето, в земната атмосфера има облаци. Облаците се състоят от водни пари, които имат свойството да поглъщат светлината много добре и тяхната „променливост“ превръща получаването на точна фотометрия от наземните телескопи доста трудна задача. При хубави условия – безоблачна нощ, ниска влажност и липса на Луна (която има лошия навик да повдига фоновото излъчване и да увеличава шума на измерванията), за ярки обекти и с прилично голям телескоп е сравнително лесно да се получи фотометрия с точност от няколко процента. Тук използвам понятията ярки обекти и прилично голям телескоп съвсем условно. Проблемът е, че за много наблюдателни задачи такава точност не е достатъчна – например пасажите (още известни като транзити) на екзопланетите обикновено имат дълбочина под един процент и много малко от тях са в орбита около „условно“ ярки звезди, дори за най-големите съвременни телескопи. Нещо повече, наистина интересните планети, с диаметър подобен на земния, предизвикват пасажи с дълбочина десети или дори стотни от процента. До някаква степен може да помогнат така наречените относителни измервания, когато се наблюдават едновременно обектът на изследване и звезда (или по-добре много звезди) за сравнение (два примера от работи на един мой аспирант, Клаудио Кацерес: http://adsabs.harvard.edu/abs/2009A%26A…507..481C, http://adsabs.harvard.edu/abs/2011A%26A…530A…5C, но и това решение не работи винаги, защото звездата за сравнение трябва да е почти толкова ярка, колкото обекта, а ярките звезди на небето са малко и обикновено са разположени далече една от друга и рядко попадат в полето на съвременните инструменти. За телескоп в космоса няма нужда от звезди за сравнение, нито от постоянни наблюдения на „стандартни“ звезди за да се калибрира сигналът. Нещо повече, обикновено космическите телескопи се калибрират на земята преди изстрелването им, и след това само се проверява дали чувствителността им съответствува на определената преди старта (съвсем без стандарти и калибриране не може, защото трябва да се следи за деградацията на огледалата и детекторите в суровите космически условия). Демонстрация на възможностите да се получава свръхточна фотометрия от космоса са телескопите Коро (https://en.wikipedia.org/wiki/COROT) и Кеплер (https://en.wikipedia.org/wiki/Kepler_%28spacecraft%29).

* * *

Наред с големи проекти, които изброявах до сега, съществуват и множество малки космически телескопи, за които рядко се говори. Причините за малката им „популярност“ са комплексни – в някой аспекти те успешно се конкурират с „големите“, но създателите им неизбежно са приели конструктивни решения за да намалят себестойността им, което в повечето случаи ги е превърнало в „нишови“ инструменти, подходящи само за адресирането на определени специфични наблюдателни задачи.

МОСТ (MOST; Microgravity and Oscillation of Stars) беше изстрелян на 30.юни.2003 година. Той представлява „куфар“ с размери 65 на 65 на 30 сантиметра, тежи 53 килограма и носи на борда си 15-сантиметров оптичен телескоп. Както се вижда от името, първоначалната задача е била да се изследва вътрешната структура на звездите с методите на астросеизмологията (https://en.wikipedia.org/wiki/Asteroseismology) – микро-променливост на звездите, породена от акустични осцилации в недрата им.

Обаче, не изненадващо, най-цитираните резултати са свързани с изследването на планети около други звезди. Джейсън Роу и съавторите му (списъкът включва и българина Димитър Съселов, професор в Харвард) наблюдават в продължение на 58 дни звездата HD 209458. Тя е от спектрален клас GoV и има ефективна температура около 6000 градуса по скалата на Келвин – не много различна от Слънчевата. В орбита с период около 3.5 дни около нея обикаля „горещ Юпитер“ (https://en.wikipedia.org/wiki/HD_209458_b). Роу и колеги му са се опитали да регистрират отразената светлина на планетата, но неуспешно (http://adsabs.harvard.edu/abs/2006ApJ…646.1241R и http://adsabs.harvard.edu/abs/2008ApJ…689.1345R). Това поставя горна граница на албедото (отражателна способност) на планетата и означава, че тя не е покрита с облаци, които да отразяват светлината на тамошното слънце. Такива отразяващи облаци в Слънчевата система имат Земята и Венера.

МОСТ има малко полезрение, което е именно един от тези компромиси, необходими за да се намали стройността на спътника. Това ограничава приложението му до изследване на единични обекти, какъвто е случая в HD 209458. Подобна беше стратегията на Джоуша Уин и неговите колеги, които през 2011 година обявиха (http://adsabs.harvard.edu/abs/2011ApJ…737L..18W), че петата и най-вътрешна планета в системата на звездата 55 Cnc има транзити. До тогава беше известна само масата на планетата – от измервания на радиални скорости, около 8.6 земни маси, а транзитите позволиха да се измери радиусът ѝ – два пъти по-голям от земния. Звездата 55 Cnc е от шеста звездна величина и човек със средно добро зрение може да я види с невъоръжено око (с други думи, без да използва телескоп или дори бинокъл). Това измерване постави планета в класа, наречен свръх-земи, защото тези обекти имат малко по-големите маси и размери от земните. Теоретичните модели предсказват за повечето от тях структура, подобна по-скоро на газови планети, затова някой предпочитат да ги наричат мини-Нептун.

Себестойността на МОСТ е около 7 милиона евро, телескопът продължава да се използва вече тринадесет години. За сравнение, обществената поръчка за 75 автомобила за Народното събрание от 2012 година е около 4.4 милиона лева, но за срок от само три години(http://www.dnevnik.bg/bulgaria/2012/09/13/1904108_narodnoto_subranie_obiavi_poruchka_za_tochno_opredelen/).

През 2014 година, когато канадското правителство реши да намали финансирането за наука, учените, които го използват се канеха да прибягнат до crowdfunding, за да продължат мисията му. В момента МОСТ се управлява от частната фирма MSCI (http://www.mscinc.ca/products/most.html), от името на Канадската Космическа Агенция. MSCI продължава научните изследвания с него, но също предлага и наблюдения на комерсиална основа.

БРИТЕ (BRITE; Bright Target Explore; https://en.wikipedia.org/wiki/BRITE) също е канадска обсерватория (с участието на Полша и Австрия; полската страница за БРИТЕ е тук: http://www.brite-pl.pl/index_en.html), но за разлика от МОСТ това не е един спътник, а цели шест наноспътника, кубове с дължина на страната 20 сантиметра и тегло 10 килограма. Апертурата на телескопите е само 3 сантиметра – това е компромисът при този проект, – но пък телескопите са много и могат да се използват паралелни за наблюдения на различни обекти. Към настоящия момент пет от шест изстреляни БРИТЕ наноспътника са в работно състояния. Не на последно място е важно, че ползрението на спътниците е 24 градуса, което позволява да се наблюдават едновременно множество ярки звезди. Статия с подробно техническо описание на проекта може да се види тук: http://cdsads.u-strasbg.fr/cgi-bin/bib_query?2014PASP..126..573 и стойността на всеки един от наноспътниците е около 1-2 милиона долара (http://thevarsity.ca/2013/03/10/u-of-t-launches-nano-satellites-into-orbit/).

Няколко мои колеги от Есо, сред които Дитрих Бааде използваха БРИТЕ като част от голяма колаборация за да изследват загубата на маса при Бе звездите (https://en.wikipedia.org/wiki/Be_star). Това са горещи звезди, които се въртят толкова бързо, че центробежната сила на екватора им почти се изравнява с гравитацията и част от звездното вещество „отлита“ в космоса и образува газов диск около звездата. Тези звезди се разпознават лесно по силните емисионни линии в спектрите им. Наблюденията показват, че прехвърлянето на материал от звездата към диска не става с постоянна скорост, а е модулирано от пулсации на Бе звездите, което на свой ред води до активност в диска. Това е само една от първие три статии, използващи наблюдателен материал от БРИТЕ. Сигурен съм, че ни предстои да видим още важни резултати от този проект.

* * *

Надявам се, че успях да покажа – малкит и евтини космически телескопи имат своята ниша, специално в наблюденията на ярки звезди и в продължителните кампании, покриващи много седмици или дори месец. Обаче ползата от тях не се изчерпва до тук.

Нека да си спомним за спускаемия апарат Бийгъл-2 (https://en.wikipedia.org/wiki/Beagle_2), изпратен към Марс заедно с космическата станция Марс експрес, той трябваше да кацне малко преди Коледа на 2003 година. Апаратът се отдели от станцията, спусна се в атмосферата и изчезна. Разследването на ЕСА стигна до заключението, че проектът е било доста „суров“, и раязкри. Наиситна, в началото на 2015 годна Бийгъл-2 беше открит върху фотографии на марсианската повърхност и стана ясно, че той все пак е кацнал, но една от слънчевите батерии не се е отворила, блокирайки възможността за радиоконтакт със Земята.

Проблемите с Бийгъл-2 издават липсата на опит и бих казал, на „зрялост“ в космическата Британската космическа индустрия, която навремето се отказа от създаването на собствени носител; рязък контраст с Японската космическа агенция, която трупа опит с годините изпращайки една след друга амбициозни мисии като Хаябуса (https://en.wikipedia.org/wiki/Hayabusa) например.

Малките космически телескопи са именно школата, която създава кадрите и инфраструктурата, необходими за по-смели космически проекти. Разбира се, натрупаният опит в създаването и управлението на спътници не се ограничава до телескопи, както и обучението на студентите по астрономия не означава, че те непременно трябва да станат астрономи – уменията да решават проблеми, да намират отговори чрез изследователски методи могат да се приложат навсякъде и са един от начините науката да върне на обществото инвестициите, които са направени за нея.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Астрономия, статия на деня: планетната система TRAPPIST-1


Настоящата статия слага началото на рубрика по популярна астрономия в моя блог.

TRAPPIST е 60-сантиметров белгийско-швейцарски телескоп (TRAnsiting Planets and PlanetesImals Small Telescope; https://en.wikipedia.org/wiki/TRAPPIST), който работи на Ла Сия от 2010 година. Макар да се намира на най-старата наблюдателна база на ЕСО, телескопът е национален проект и за наблюдателно време с него не може да се кандидатства по обичайната система от заявки на ЕСО. За сметка на това консорциумът, който го използва, плаща на ЕСО „наем“ за използване съоръженията на обсерваторията.

TRAPPIST може да е малък, но вече си е осигурил място в историята на астрономията с наблюдения на множество окултации на астероиди и планети-джуджета (например http://adsabs.harvard.edu/abs/2012Natur.491..566O, с участието на вашия покорен слуга) и с откриването на първите пръстени около планета-джудже (Чарикло, http://adsabs.harvard.edu/abs/2014Natur.508…72B).

Преди седмица, на 2.05.2016, група колеги, предимно от Белгия и Швейцария, обявиха за ново откритие с TRAPPIST – система от три планети, обикалящи около студена червена звезда (или дори кафяво джудже – масата на тамошното „слънце“ е на границата между звезди и джуджета) само на 12 парсека от Слънчевата система. Панетите са открити по метода на транзитната фотометрия (https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets#Transit_photometry) – т.е. по намаляването на блясъка на звездата, когато планетата засенчва за наблюдателя част от звездната повърхност. Заради усилията на множество обзори, използващи този метод (https://en.wikipedia.org/wiki/HATNet_Project, https://en.wikipedia.org/wiki/SuperWASP, https://en.wikipedia.org/wiki/COROT, https://en.wikipedia.org/wiki/Kepler_%28spacecraft%29 и други) днес знаем за хиляди планети около други звезди. Някои от тези планети имат размери, сравними със земните. Случаят с трите планети около TRAPPIST-1 е точно такъв – радиусите им за 1.11, 1.05 и 1.16 земни радиуса. Масите им са неизвестни – за да се определят за необходими свръхточни измервания на радиалната скорост на звездата, които вероято ще бъдат получени със следващото поколение свръхстабилни астрономически спектрографи (например ЕСПРЕССО – https://www.eso.org/sci/facilities/develop/instruments/espresso.html).

Защо трите планети около TRAPPIST-1 са интересни:

– размерите им позволяват да са подобни на Земята. Тук подбрах думите си много внимателно, защото сходният радиус не гарантира сходство на физичните условия на повърхността на планетата: Венера има радиус около 0.9 от земния, но освен че се намира по-близо до Слънцето, нейната атмосфера е много по-гъста и там действа значителен парников ефект.

– те са далече от звездата в тяхната система, значително по-далече от така наречените „горещи“ юпитери – планетите от този тип бяха първите открити около „нормални“ слънцеподобни звезди (пример: https://en.wikipedia.org/wiki/51_Pegasi_b), но те не са подходящи места за живот подобен на нашия, защото температурите на повърхността им се измерват в хиляди градуси. Тук е от значение един параметър, наречен irradiance, който на български може да се преведе като облъчване, и описва енергията, която планетата получава от централната звезда. Например Венера получава от Слънцето около 2 пъти повече енергия на единица площ, отколкото Земята, Марс – около 2.3 пъти по-малко, а Юпитер – около 27 пъти по-малко. Но радиусът на орбитата не е единственият важен параметър: светимостта на централната звезда също има знаечние. В планетна система, където вместо звезда с темература около 6000 келвина като Слънцето, имаме много по-студента звезда, планетите трябва да се намират по-близо до нея за да получват същото облъчване. Случаят с планетите около TRAPPIST-1 е точно такъв: радиусите на техните орбити са 0.011, 0.015 и 0.022-0.146 (за сега орбиталните параметри на третата планета не са известн достатъчно точно, затова давам интервал) от радиуса на земната орбита; двете вътрешни планети получават съответно 4.25 и 2.26 пъти повече енергия от тяхната звезда, колкото Земята получава от слънцето. За най-външната планета наблюденията поставят граници между същото количество енергия, което получава Земята и 1/50 от него. С други думи, поне една от трите планети има шанс да бъде нова „бледа синя точка“ (https://www.youtube.com/watch?v=p86BPM1GV8M)

– TRAPPIST-1 е ярка звезда (http://simbad.u-strasbg.fr/simbad/sim-id?Ident=2MASS+J23062928-0502285). Наистина, тя не се вижда с просто око и е доста червена, но за възможностите на най-добрите съвременни (и от близкото бъдеще: https://www.eso.org/sci/facilities/eelt/, https://en.wikipedia.org/wiki/James_Webb_Space_Telescope) астрономически инструменти, особенно в инфрачервената област, тя позволява да се използват за изследването на планетите около нея множество техники, неприложими за болшинството от другите екзопланети. Най-важните, но не единствените от тези техники са транзитната спектроскопия (https://www.eso.org/sci/meetings/2014/exoelt2014/presentations/LopezMorales.pdf) и промяната на времената на транзитите (често съкращавано като TTV; https://en.wikipedia.org/wiki/Transit-timing_variation).

Авторите на откритието са подготвили чудесна страница с информация: http://www.trappist.one/

Системата на TRAPPIST-1, заедно с GJ1214b, GJ436b, GJ1132b и още няколко подобни планети с малки радиуси, открити наскоро от Kepler/K2 (http://kepler.nasa.gov/) ще бъде източник на нови знания за екзопланетите и което е особено интересно, ще ни помогне да разширим представите си за разнообразието на физическите параметри на екзопланетите.

Leave a comment

Filed under astronomy, астрономия, наука, science

Poland joins ESO (or Hi Mom, I am on TV!)


https://www.facebook.com/video.php?v=732261473509083&set=vb.597059990362566&type=2&theater

Leave a comment

Filed under astronomy, астрономия, наука, science

Строителството на европейския 39-метров телескоп


Вчера, на 18.06.2014 година, върхът Серо Армазонес, в околностите на чилийския град Антофагаста, бе изравнен за да се създаде достатъчно голяма равна площадка за строителството на 39-метровия европейски телескоп Е-ЕЛТ (European Extremely Large Telescope; http://en.wikipedia.org/wiki/E-ELT). Телескопът е проект на Европейската южна обсерватория (European Southern Observatory; www.eso.org), в която работя от 2001 година. Предполага се, че неговото строителството ще отнеме десетилетие, и първите наблюдения ще започнат през 2024 година.

Най-лесно изравняването се прави с експлозия, което се случи тук към 2 часа следобед, чилийско време. Съобщение на ЕСО за пресата, с много снимки и видео от събитието може да се види тук: http://www.eso.org/public/news/eso1419/

Моето собствено видео е тук: https://www.youtube.com/watch?v=6ahsjKU-xhU

Leave a comment

Filed under astronomy, астрономия, наука, science

ESO (European Southern Observatory) Celebrates 50th Anniversary on Oct 5, 2012 with a live stream from Paranal


This coming Friday, Oct 5, the Observatory where I have been working since 2001 celebrates the 50th anniversary of the signing of the founding agreement. I am happy to have been a part of this great scientific adventure for more than ten years.

There will be a 6-hour long live stream starting at 11:00 CEST:
http://www.eso.org/public/outreach/50years/webcast.html
In the words of our PR officer: “For the first time in ESO’s history, the VLT will be pointed towards an object in the sky selected by members of the public — the Thor’s Helmet Nebula (NGC 2359). We look forward to sharing this event with you.”

Unfortunately, I will be at La Silla – the other telescope site. In fact, it was the first ESO telescope site in Chile.

Leave a comment

Filed under астрономия