Tag Archives: екзопланети

Конференция: животът във Вселената / Workshop: Life in the Universe, 24-28.10.2022


Търсенето на живот във Вселената изисква биологията, химията, астрономията, а вероятно и други науки да работят заедно за да се получи отговор. През Октомври 2022 година в София ще се проведе конференция, която цели да обедини изследователите от различните области в решаването на този проблем.

Повече за конференцията може да се прочете тук: http://physicsoflivingsystems.org/events/workshop-life-in-the-universe/

А по-надолу привеждам и част от първата обява, на английски.

*

Ever since the dawn of human civilization, the problem of defining life and searching for its occurrence has been of great interest. One might even argue that along with the emergence of intelligence and consciousness, the understanding of life itself is one of the premier scientific issues of our time. Over the past decades, there have been major achievements in astronomy, such as the discovery of exoplanets in amazing abundance; chemistry, such as the development of synthetic networks with overlap to geochemical processes; quantitative biology, such as our ability to increasingly understand in detail the workings of processes underlying living systems and the existence of all manner of extremophiles; and the studies of geochemistry and the fossil record of the early earth. These achievements, if brought together, offer the possibility of yielding major breakthroughs for the aforementioned scientific questions.

To facilitate such a fruitful transdisciplinary interaction, we are organizing a research meeting to take place in Sofia, Bulgaria the week of October 24-27, 2022. We plan to invite both leading experts and early career researchers from the relevant research areas and discover opportunities for cross-fertilization between subfields. Our aim is to create the seeds of major progress in our understanding of life. Fields to be represented at the planned meeting include:

Exoplanets: their detection, dynamics, and remote sensing thereof

Geophysics, geochemistry and the connections between prebiotic chemistry and the origins of life

Synthetic cells and minimal organisms

Quantitative approaches to biological networks such as those responsible for metabolism in living systems

Life in harsh environments; the search for extraterrestrial life in the solar system

In order to undertake this effort, we have assembled an Advisory Board of conference attendees. This group will help arrange the scientific program and direct the discussions toward accomplishing the stated goals.

Leave a comment

Filed under astronomy, Bulgaria, България, астрономия, наука, science

Лекция на нобеловия лауреат Мишел Майор


Вчера Мишел Майор изнесе лекция, в която разказа как може да се направи следващата голяма крачка в търсенето на малки екзопланети подобни на Земята.
На 27.06 в испанския град Валенсия започна ежегодния конгрес на Европейското астрономическо дружество. Казвам конгрес, но това е една седмица, през която се провеждат едновременно тридесетина конференции – най-дългите са по 2.5-3 дни, най-късите са кратки сесии от по по няколко часа. Доколкото е възможно, организаторите се стараят да направят програмата така, че конференции по близки теми да не се застъпват. Това не винаги и възможно, особено заради странните комбинации на научни интереси у някой астрономи, но пък позволява човек да слуша много различни доклади, просто като излезе от една зала и влезе в съседната.
Освен отделните конференции, има и пленарни сесии, обикновено по обяд. Вчера пленарен доклад изнесе Мишел Майор. Едва ли има смисъл да обяснявам, че е той, заедно с тогавашния си аспирант Дидие Кело, е един от откривателите на първата планета извън слънчевата система, която се намира в орбита около звезда от слънчев тип.
Старецът – Майор е на 80 години – направи ревю на състоянието на търсенето на екзопланети, и както казах в началото, показа как може да се направи следващата голяма стъпка в тези изследвания.
Откритието на Майор беше направено през 1995 година по метода на радиалните скорости, който се базира на факта, че строго погледнаото, планетите не обикалят около звездите, а планетите –и– звездите обикалят около общия им център на масите. За страничен наблюдател изглежда, че планетата обикаля около звездата, защото центъра на масата на цялата система обикновено е много близо до центъра на звездата.
От практическа гледна точка всичко е просто – наблюдава се звездата (планетата е много слаба и в огромното болшинство от случаите изобщо не се вижда, дори с най-съвременните астрономически инструменти) получават се спектри и се измерва изменението на лъчевата скорост на звездата. Тук работи ефектът на Доплер – когато звездата се отдалечава от нас, докато се движи по орбитата си, линиите ѝ се изместват към червеното, а когато се приближава – към синьото.
Ефектът е много малък, гигантските планети с маси като на Юпитер предизвикват промени с амплитуда от порядъка на стотици метра в секунда. А интересните планети с маси като земната, предизвикват промени в радиалните скорост от порядъка на метри или дори сантиметри в секунда.
На пръв поглед всичко е лесно – трябва да строим по-точни и по-стабилни телескопи. Но не, наблюденията показаха, че звездите сами генерират „шум“ – промени от съшия порядък, като земеподобните планети заради конвекцията – това е свързано с пренасянето на топлинна енергия от ядрото на звездата към повърхността ѝ. Част от този пренос става като „нагоре“ или по-скоро „навън“ се движи горещ материал, идващ от вътрешността. Движението на материал неизбежно е свързано с Доплерово отместване на спектъра.
Майор предложи да се използват за измерване на отместването на звездните спектри сами линии, които се образуват на по-голяма дълбочина в звездите, защото там случайните движения на конвективни клетки имат по-малки вариации. Той показа фигура от работата на негов аспирант, който проверил тази идея и се оказа, че методът наистина работи! Подобрението в точността на измерването на радиалните скорости е почти един порядък.
След това можеше да му се задават въпроси и аз се възползвах да го питам какво мисли за измерване на радиалните скорости в инфрачервената област. За това има добре известна причина – контрастът между областите с различни температури е по-малък, отколкото в оптичната област. Той честно отговори, че не знае и разказа за NIRPS – един инфрачервен спектрограф, който швейцарската група за търсене на ексопланети (основана от него) подготвя в момента. Каза, че се надява опитът с NIRPS да даде отговор на моя въпрос след няколко години, но че има един друг проблем поглъщането на земната атмосфера, което е в състояние да повлияе на точността на наблюденията.
Аз всъщност знам за NIRPS, защото част от работата ми за обсерваторията е да се занимавам с интегрирането на неговата програма за обработка на данните в нашата инфраструктура от подобни системи. Наистина, премахването на поглъщането от земната атмосфера е сложен процес. Моето собствено виждане е, че решението на проблема е да се измерват радиалните скорости в инфрачервената област от космоса, където няма поглъщане от земната атмосфера. Но това е областта, в която работи Европейската космическа агенция, не Европейската южна обсерватория.

Leave a comment

Filed under Uncategorized

Нова научнопопулярна статия: Всичко се променя, дори Слънчевата система


Повечето промени във Вселената не могат да бъдат забелязани в рамките на един човешки живот. Орбитите на планетите се променят, а те самите мигрират постоянно, включително и Земята.

Валентин Иванов

Инженер Димитър Пеев (1919-1996), основател и пръв главен редактор на сп. „Космос“, е единственият писател, който отбелязва във фантастично произведение, че планетните системи могат да еволюират. В своя роман „Фотонният звездолет“ (1963) той описва полет на земна експедиция до Алфа Кентавър – система от три звезди. Космонавтите откриват, че около звездата Проксима има два вида планети – орбитите на първите лежат почти в една и съща равнина, както е в Слънчевата система. Орбитите на вторите планети са ориентирани случайно. Чрез героите си Пеев изказва предположение, че обектите от едната група са се образували около Проксима, а от другата са „изхвърлени“ чрез приливни взаимодействия от системите на двете главни звезди, които са много близо една до друга, и впоследствие са „заловени“ от техния по-далечен компаньон Проксима. Оказва се прав – планетните системи, както всичко в този свят, се променят!

Повече може да прочетете в бр. 11/2021 на сп. „Осем“: https://www.spisanie8.bg/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-8-%D0%B1%D1%80%D0%BE%D0%B9-112021-%D0%B3.html

Leave a comment

Filed under astronomy, bulgarian science ficiton, астрономия, наука, научна фантастика, science, science fiction

Статия в блога на ESO за един странен астрономически обект


https://www.eso.org/public/blog/what-is-this/

С едно изречение – нещо скрива от нас част от звездата: планета с гигантски пръстени, или множество комети, или диск – все още не знаем.

А препринт на нашата статия в Monthly Notices може да видите тук: https://arxiv.org/pdf/1811.02265

Leave a comment

Filed under астрономия, космонавтика, наука, science

Астрономия: статия за наша статия в New Scientist


Когато ме питат с какво точно се занимавам – в професионален аспект – аз обикновено отговарям, че съм general-purpose infrared astronomer, което приблизително може да се разбира, че за инфрачервената астрономия аз съм нещо каквото са военните лекари за медицината – разбират от всичко по малко. Участвал съм в изследвания и съм публикувал статии за обекти от слънчевата система и на далечни квазари. Включително – и няколко статии за Плутон. Последната от тях е голям, не, по-скоро огромен проект със стотици участници, в който се използват наблюдения от десетки телескопи на различни места по света за да изследва атмосферата на тази планета-джудже. Главният резултат от тези наблюдения е, че през последните три десетилетия налягането в атмосферата на Плутон се увеличава, което с сезонно изменение. Просто сезоните на Плутон са дъъъъъъллллггггггииииии, защото една негова година се равнява на 248 земни…
Безплатен препринт на самата статия – публикувана в Astronomi & Astrophysics – може да се прочете тук: https://arxiv.org/pdf/1903.02315.pdf
А статията за нашата статия в New Scientist – тук: https://www.newscientist.com/article/mg24132214-200-it-will-be-snowing-nitrogen-on-pluto-for-the-next-century/
За съжаление достъпът до New Scientist, но такива са реалностите на пазара. Вероятно и други медии ще отразят нашата работа.

Leave a comment

Filed under астрономия, космонавтика, наука, science

Планетата с пръстена – нова научно-популярна статия в сп. „Осем“, брой 11/2018


Преди половин век Димитър Пеев публикува в класическото (и велико!) списание „Космос“ статия за Сатурн. Какво повече сме научили от тогава до сега за най-красивата планета в Слънчевата система? – Например, че Сатурн не е единственото небесно тяло с пръстени.
По-подробно четете в новия брой 11/2018 на списание „Осем“:
https://spisanie8.bg/admin/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5/%D1%81%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5-8-%D0%B1%D1%80%D0%BE%D0%B9-112018-%D0%B3.html
Списанието е достъпно в павилионите за разпространение на печата и в книжарниците.

Leave a comment

Filed under astronomy, астрономия, наука, science

Странни звезди: още една звезда с пръстен или с необикновени спътници


От време на време астрономите попадат на звезди, които не следват обичайното поведение, на милиардите си посестрими. Обикновено подобни находки са свързани с неподозирани явления или процеси.
Преди няколко години Табита Бояджиян (тогава постдок в Йейл; https://en.wikipedia.org/wiki/Tabetha_S._Boyajian) откри (статията, в която откритието беше обявено: https://arxiv.org/abs/1509.03622) в базата данни на космическия телескоп „Кеплер“ (https://en.wikipedia.org/wiki/Kepler_(spacecraft)), че една иначе обикновена звезда с телефонен номер KIC8462852 (https://en.wikipedia.org/wiki/KIC_8462852) вместо име (но има и име – звездата на Таби, от откривателката) показва странни промени в блясъка си – той намалява по странен начин. Най-дълбоките минимуми достигат 20% от нормалния блясък на звездата и не се подчиняват на никакви видими правила – формата им се мени и не следват строга периодичност.
За сега няма общоприета теория, която да обяснява наблюдаваните явления. Може би няй-близо до този статус се доближава теорията на двама словашки колеги, че около звездата обикалят няколко фамилии от разпадащи се астероиди или комети (https://arxiv.org/abs/1612.06121). Наскоро звездата на Таби отново показа активност, която бе регистрирана с наземни телескопи (https://arxiv.org/abs/1801.00732).
Обектът на Ерик Мамеджек (тогава професор в университета в Рочестър; http://www.pas.rochester.edu/~emamajek/) беше открит още по-рано и също показва намаляване на блясъка (https://arxiv.org/abs/1108.4070). Но за сега е потвърдено само едно такова намалячване, макар то да има сложна структура. Единственото обяснение е, че между нас и звездата е преминала планетата с огромна система от пръстени, многократно по-голяма и по-масивна от тази на нашия красавец Сатурн. При преминаването – наречено още пасаж или транзит – планетата „засенчва“ от нас част от повърхността на звездата и намалява светлината, която достига до нас.
Преди това откритие знаехме за съществуването на пръстени само около гигантските планети и около един (Чарикло: https://arxiv.org/abs/1706.00207) или най-много два (за втория не е съвсем сигурно) транснептунови обекта в Слънчевата система.
От края на 2009 година до сега на 4.1-метровия телескоп VISTA (https://en.wikipedia.org/wiki/VISTA_(telescope)) на Европейската Южна Обсерватория (https://www.eso.org/public/; https://bg.wikipedia.org/wiki/%D0%95%D0%B2%D1%80%D0%BE%D0%BF%D0%B5%D0%B9%D1%81%D0%BA%D0%B0_%D1%8E%D0%B6%D0%BD%D0%B0_%D0%BE%D0%B1%D1%81%D0%B5%D1%80%D0%B2%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D1%8F) в Чилийските Анди се прави обзор на вътрешната част на млечния път в инфрачервената област: VISTA Variables in Via Lactea (за кратко – VVV; https://arxiv.org/abs/0912.1056). Целта на тази огромна кампания, която продължава стотици нощи наблюдателно време, с участието на десетки астрономи от целия свят (включително български), е да изследва нашата галактика – Млечния път. Но данните могат да се използват за множество различни изследвания, едно от които е търсене на обекти, подобни на двете звезди, за които стана дума по-нагоре.
Заедно с група колеги от VVV попаднахме на нещо подобно: VVV-WIT-07 (което се разшифрова като VVV What Is This – 07). Все още нямаме ясна идея към кой от двата класа принадлежи нашата „странна“ звездичка. Статията, озаглавена „VVV-WIT-07: another Boyajian’s star or a Mamajek’s object?“ може да се прочете тук: https://arxiv.org/abs/1811.02265

Leave a comment

Filed under astronomy, Bulgaria, България, астрономия, наука, science

Астрономия, статия на деня: когато писателите фантасти се хванат за калкулаторите или може ли слънцето никога да не залязва над Татуин


В заглавието би трябвало да заменя калкулаторите с логаричтмични линийки, защото някой от статиите, който ще спомена по-нататък са доста стари.

Към размисли на тази тема ме подтикна една статия, която се появи през октомври миналата година на Ливърморския сървер за препринти от моя любим писател, австралиецът Грег Игън: http://arxiv.org/abs/1510.05345

Статията е изпратена в Astrophysical Journal, америакнско научно списание, което заедно с другото американски списание Astronomical Journal (то е ориентирано повече към чисто наблюдателни изследвания), с английското Monthly Notices of the Royal Astronomical Sosciety и с общоевропейското Astronomy and Astrophysics са местата където астрономите най-често публикуват статиите с резултатите си.

Все още статията на Игън не е приета, защото не е излязла на страницата на самото списание, но съдейски по това, че на сървера в края на май се появи трета коригирана версия, процесът ѝ на рецензиране е доста напреднал.

Игън не е чужд на научните публикации. По образование той е математик, има статии по изчислителни методи и нищо чудно, че тук става дума за теоретична работа.

Всичко започва малко по-рано – през 2015 година амерканският професор Юджин Окс, професор по физика в Университате в Оубърн публикува статия, в която предалага нов вид орбити в системите на двойни звезди.

* * *

Традиционно се смята, че ако звездите са достатъчно далече, около всяка от тях може да има стабилни планети. Точно такава е планетната система около главната звезда на двойната система Гама Цефей. Интересно, че първи докладваха за наличието на планети около тази звезда няколко канадски учени още през далечната 1988 година (Кябмъл, Уокър и Янг: http://adsabs.harvard.edu/abs/1988ApJ…331..902C; пдф-ът е публично достъпен), но резултатът им беше подложен на съмнение, и така откриватели на първата екзопланета станаха швейцарсите Майор и Коло през 1995 годна (http://adsabs.harvard.edu/abs/1995Natur.378..355M).

Вторият известен тип планетни орбити в двойните системи обикалят около центъра на масите на двете звезди и отново изминава време, преди първата подобна система да бъде призната от астрономическата общност – през 1993 година Торсет, Арзуманян и Теълър публликуваха статия (http://adsabs.harvard.edu/abs/1993ApJ…412L..33T), в която описват планета с маса около 30% от масата на земята, обикаляща около двойка състояща се от пулсар и бяло джудже. Към настоящия момент са известни двадесетина подобни планети (https://en.wikipedia.org/wiki/Circumbinary_planet), включително и около двойни звезди от глваната последователност.

* * *

Окс предлага съвършенно нов вид орбита в която планетата обикаля не около звездите, а около оста, която ги свързва. Представете си гира, в която топките са двете звезди. Дръжката е въпросната ост помежду им и планетата ще се движи по орбита, лежаща в развина перпендикулярна на дръжката.

Разбира се, аз тук опростявам. Статията на Окс се състои от дванадесет страници с формули, тук-там разредени с някоя фигура. Рашението е аналичитно, което не е за чудене, защото Окс е от руски произход (и вероятно първото му име всъщтност е Евгений, а не Юджин), а руската физика е известна с добрата си аналитична школа – бившите студенти по физика никога няма да забравят многотомника на Ландау и Лифшиц. Без да се задълбочавам с подробности само ще поясня, че орбитата всъщюност ще бъде конично сечение, например елипса, и равнината ѝ може да осцилира около точката на Лагранж между двете звезди. За любопитните – на Фигура 3 в статията на Окс има скица, която дава по-добра представа.

Наличието да подобни стабилни орбити е интересно по няколко причини. Първо, то има потенциала да разшири жилищната площ във Вселената, защото около 1/3 от звездите принадлежат на двойни, тройни и други системи с по-висока кратност. Второ, подобни системи са интересни с по-лесната си наблюдаемост – има голяма вероятност те да имат транзити (известни още като пасажи). Като истински теоретик Окс изследва и възможността планетите да бъдат открити по излъчваните гравитационни вълни. Гравитационни вълни излъчва и Земята докато обикаля около Слънцето, но планети на новопредсказаните орбити можат да имат много по-къса година от земната, и следователно ще излъчват с много по-голяма интензивност

* * *.

Татуин не обикаля около оста, свързваща двете звезди, който залязваха пред Люк, защото на плнетите, предсказани от Окс, двете звезди никога няма да се виждат едновременно, те винаги ще бъдат от противоположните страни на планетата, от което следва, че на нея никога няма да има нощ. През Викторианската епоха са казвали, че слънцето никога не залязва над Британската империа, просто защото тя е толкова голяма, че има територии на противоположните части на Земята. Слънцето (по-скоро едно от слънцата) никога няма да залязва над която и да е държава, намираща се Окс-овите планети.

Във фантастиката са описани планети, намиращи се в системите на двойни и по-високократни звездни системи. Един съвем скорошен пример е трилогията „Проблемът на трите тела“ (https://en.wikipedia.org/wiki/The_Three-Body_Problem; първият том спечели наградата Хюго за най-добър роман през 2015 година) от китайския автор Ли Ксицин. Там орбитата на планетата е хаотична, кратки епохи на „обитаемост“ се редуват с продължителни периоди, през които планетата е или леден хладилник, или огрнена фурна. Местните форми на живот се е приспособили, развивайки способност да се обезводняват и хибернират в този вид през периодите на необитаемост.

* * *

Статията на Игън е дълга само три странички – доста по-малко от обичайното. Тезата ѝ е описана кратко и ясно в абстракта: орбитите, предложени от Окс са нестабилни, ако се отчете орбиталното движение на двойната звезда. За да е стабилна орбитата, ъгловият момент трябва да се запазва; Окс допуска това, разглеждайки кръгова планетна орбита, точно перпендикулярна на линията, свързваща двете звезди, а Еган проверява това допускане и демонстрира, че ъгловият момент ще се мени с период, развен на периода на въртене на двойната звезда около общият ѝ център на масите.

Аз съм обикновен наблюдател, а не специалист по звездна динамика, статията все още не е приета за публикация, така че ще изчакам да преди да съдя кой е прав – очевидно проблемът не нетривиален и е лесно да се пропусне някой фин ефект. Ако Игън е прав, може само да съжаляваме, че предложените от Окс планетни системи не съществуват.

* * *

За мен е интересно друго – как би се образувала подобна система и дали изобщо е възможно. Проблемът е, че практически (запомнете тази уговорка, по-надолу ще се върна към нея) всички звездни системи, който познаваме до сега – от планетните системи и двойните звезди до галактиките, са се образували от диск – протопланетен, протозвезден или протогалактичен. Това е свързано с процеса на свиване на облаците материал, от които тези системи се образуват и с факта, че колапсът никога не е сферично симетричен. Достатъчно е облакът да има съвсем малко въртене преди началото на свиването, за да създаде то центробежна сила, която да се противопостави на свиването. При това въртенето се засилва в процеса на свиване – също както танцуващите на лед се завъртат по-бързо ако свият ръцете си, заради запазването на въртящия момент.

Центробежната сила породена от въртенето се противопоставя на свиването само в равината на въртене, докато по оста на въртене свиването протича без проблем. В резултатът се образува диск. По тази причина орбитите на планетите в повечето планетни системи лежат приблизително в една равнина и повечето галактики имат дискове. Освен въртенето, магнитните полета и излъчването на вече образувани звезди мога да възпрепятстват свиването, тук разглеждам опростена картина.

Сега да се върнем към уговорката, която направих по-нагоре. Наистина, орбитите на повечето планети лежат в една равнина, но не всички, орбитата на планетата джудже Седна например е наклонена на около 12 градуса спрямо земната орбита. А при галактиките има обекти, чиято форма няма нищо общо с диск – например елиптичните галактики. И в двата случая отговрни за тези „отклонения“ са процеси на взаимодействие – между Седна и гигантските планети; между галактиките, от чийто сливане са са образували самите елиптични галактики.

Нещо подобно е необходимо за образуването на планетните ситема от типа, предсказан от Окс: логично е да се предположи, че равнината на орбитата на двойите звезди, които са двата най-масивни обекта в системата, ще съвпада с екваториялната равина на протозвездния диск, от който са се образували те. А орбитата на планетата е перпендикулярна на тази равнина и е мното трудно да си представим как ще се образува подобна планетна система и от къде ще се вземе моментът, който ще движи планетата по орбитата ѝ. Едиственото обяснение е взаимодействие с друга ситема, точно ориентирано в равнина, перпендикулярна на орботалана равнина на двойната звезда, а такова съвпадение е малко вероятно.

* * *

Това е аргумент за ниската вероятност да възникнат подобни сиситеми, а не аргумент за нестабилността им, какъвто привежда Игън. Моят аргумент има наблюдателно отвърждение – защото същият механизъм на образване работи при галактиките и там той е също толкова рядък: известни са галактики с две перпендикуларни структури (те се наричат галактики с полярен кръг: https://en.wikipedia.org/wiki/Polar-ring_galaxy) и честотата им при галактиките, които със сигурност са претърпели взаимодействия наскоро (по вселенски мащаби, разбира се; такива галактики сами по себе си се срещат рядко) се измерва с няколко процента (атлас и каталог на подобни галактики може да се види тук: http://adsabs.harvard.edu/abs/2011MNRAS.418..244M).

* * *

Игън не е единственият фантаст, оставил името си сред авторите на научни статии. Но обикновено пътят води в обратна посока – учени, прописват фантастика. Примерите са много, започвайки от Камил Фламарион (https://en.wikipedia.org/wiki/Camille_Flammarion) и стигайки до Алистър Рейнолдс (https://en.wikipedia.org/wiki/Alastair_Reynolds). Специално ще отбележа Борис Стргацки, който е работил известно време в Пулковската обсерватория, преди да стане професионален писател. Днес в астрономическите бази от публикации може да се намери една едиствена негова статия за асиметричната форма на планетите гиганти в Слъневата система (http://adsabs.harvard.edu/abs/1962IzPul..23..144P; това е статията, която навярно е написана с помощта логаричтмична линийка, а не на калкулатор).

Случаят с Игън е различен – той идва извън астрономията, макар да е програмист и специалист по приложна математика – и дава повод да си задам един друг въпрос: дали „външен“ човек може да произвежда научни резултати или специализацията в науката е достигнала ниво, което изключва подобна възможност. За това – друг път. А дали статията му ще бъде приета в списанието, ще покаже бъдещето.

Leave a comment

Filed under astronomy, астрономия, наука, science

Астрономия, статия на деня: планетната система TRAPPIST-1


Настоящата статия слага началото на рубрика по популярна астрономия в моя блог.

TRAPPIST е 60-сантиметров белгийско-швейцарски телескоп (TRAnsiting Planets and PlanetesImals Small Telescope; https://en.wikipedia.org/wiki/TRAPPIST), който работи на Ла Сия от 2010 година. Макар да се намира на най-старата наблюдателна база на ЕСО, телескопът е национален проект и за наблюдателно време с него не може да се кандидатства по обичайната система от заявки на ЕСО. За сметка на това консорциумът, който го използва, плаща на ЕСО „наем“ за използване съоръженията на обсерваторията.

TRAPPIST може да е малък, но вече си е осигурил място в историята на астрономията с наблюдения на множество окултации на астероиди и планети-джуджета (например http://adsabs.harvard.edu/abs/2012Natur.491..566O, с участието на вашия покорен слуга) и с откриването на първите пръстени около планета-джудже (Чарикло, http://adsabs.harvard.edu/abs/2014Natur.508…72B).

Преди седмица, на 2.05.2016, група колеги, предимно от Белгия и Швейцария, обявиха за ново откритие с TRAPPIST – система от три планети, обикалящи около студена червена звезда (или дори кафяво джудже – масата на тамошното „слънце“ е на границата между звезди и джуджета) само на 12 парсека от Слънчевата система. Панетите са открити по метода на транзитната фотометрия (https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets#Transit_photometry) – т.е. по намаляването на блясъка на звездата, когато планетата засенчва за наблюдателя част от звездната повърхност. Заради усилията на множество обзори, използващи този метод (https://en.wikipedia.org/wiki/HATNet_Project, https://en.wikipedia.org/wiki/SuperWASP, https://en.wikipedia.org/wiki/COROT, https://en.wikipedia.org/wiki/Kepler_%28spacecraft%29 и други) днес знаем за хиляди планети около други звезди. Някои от тези планети имат размери, сравними със земните. Случаят с трите планети около TRAPPIST-1 е точно такъв – радиусите им за 1.11, 1.05 и 1.16 земни радиуса. Масите им са неизвестни – за да се определят за необходими свръхточни измервания на радиалната скорост на звездата, които вероято ще бъдат получени със следващото поколение свръхстабилни астрономически спектрографи (например ЕСПРЕССО – https://www.eso.org/sci/facilities/develop/instruments/espresso.html).

Защо трите планети около TRAPPIST-1 са интересни:

– размерите им позволяват да са подобни на Земята. Тук подбрах думите си много внимателно, защото сходният радиус не гарантира сходство на физичните условия на повърхността на планетата: Венера има радиус около 0.9 от земния, но освен че се намира по-близо до Слънцето, нейната атмосфера е много по-гъста и там действа значителен парников ефект.

– те са далече от звездата в тяхната система, значително по-далече от така наречените „горещи“ юпитери – планетите от този тип бяха първите открити около „нормални“ слънцеподобни звезди (пример: https://en.wikipedia.org/wiki/51_Pegasi_b), но те не са подходящи места за живот подобен на нашия, защото температурите на повърхността им се измерват в хиляди градуси. Тук е от значение един параметър, наречен irradiance, който на български може да се преведе като облъчване, и описва енергията, която планетата получава от централната звезда. Например Венера получава от Слънцето около 2 пъти повече енергия на единица площ, отколкото Земята, Марс – около 2.3 пъти по-малко, а Юпитер – около 27 пъти по-малко. Но радиусът на орбитата не е единственият важен параметър: светимостта на централната звезда също има знаечние. В планетна система, където вместо звезда с темература около 6000 келвина като Слънцето, имаме много по-студента звезда, планетите трябва да се намират по-близо до нея за да получват същото облъчване. Случаят с планетите около TRAPPIST-1 е точно такъв: радиусите на техните орбити са 0.011, 0.015 и 0.022-0.146 (за сега орбиталните параметри на третата планета не са известн достатъчно точно, затова давам интервал) от радиуса на земната орбита; двете вътрешни планети получават съответно 4.25 и 2.26 пъти повече енергия от тяхната звезда, колкото Земята получава от слънцето. За най-външната планета наблюденията поставят граници между същото количество енергия, което получава Земята и 1/50 от него. С други думи, поне една от трите планети има шанс да бъде нова „бледа синя точка“ (https://www.youtube.com/watch?v=p86BPM1GV8M)

– TRAPPIST-1 е ярка звезда (http://simbad.u-strasbg.fr/simbad/sim-id?Ident=2MASS+J23062928-0502285). Наистина, тя не се вижда с просто око и е доста червена, но за възможностите на най-добрите съвременни (и от близкото бъдеще: https://www.eso.org/sci/facilities/eelt/, https://en.wikipedia.org/wiki/James_Webb_Space_Telescope) астрономически инструменти, особенно в инфрачервената област, тя позволява да се използват за изследването на планетите около нея множество техники, неприложими за болшинството от другите екзопланети. Най-важните, но не единствените от тези техники са транзитната спектроскопия (https://www.eso.org/sci/meetings/2014/exoelt2014/presentations/LopezMorales.pdf) и промяната на времената на транзитите (често съкращавано като TTV; https://en.wikipedia.org/wiki/Transit-timing_variation).

Авторите на откритието са подготвили чудесна страница с информация: http://www.trappist.one/

Системата на TRAPPIST-1, заедно с GJ1214b, GJ436b, GJ1132b и още няколко подобни планети с малки радиуси, открити наскоро от Kepler/K2 (http://kepler.nasa.gov/) ще бъде източник на нови знания за екзопланетите и което е особено интересно, ще ни помогне да разширим представите си за разнообразието на физическите параметри на екзопланетите.

Leave a comment

Filed under astronomy, астрономия, наука, science