Tag Archives: близки звезди

Екзопланета в задния ни двор: проектът „Бледа Червена Точка“ докладва за откритие на планета около звездата Проксима в съзвездието Центавър, най-близката звезда до слънчевата система


Проектът и крилатата фраза: В края на 80-те години на миналия век гениалният популяризатор на астрономията Карл Сейгън предлага да се използва една от космическите станции „Вояджер“, които вече са пресекли орбитите на Юпитер и Сатурн, за да се направи снимка на Земята. Идеята е осъществена в началото на 1990 година (тя може да се види тук: https://en.wikipedia.org/wiki/Pale_Blue_Dot). По-късно Сейгън коментира, че „всяко човешко същество, който някога е живяло, е изживяло живота си“ на тази бледа синя точка.

Създателите на проекта „Бледа червена точка“ (https://palereddot.org/), макар и активни учени-изследователи, също са и популяризатори. Те променят символичната фраза на Сейгън за да отразят правилно червения цвят на най-близката до Слънцето звезда – Проксима. Проксима е най-близкия до Слънчевата система член на система от три звезди, заедно с много по-известната двойна звезда Алфа Центавър А и Б. Проксима е пренебрегната от вниманието на широката публика, вероятно защото не е ярка – макар да е близка до нас, тя е слаба и студена червена звездичка и принадлежи към клас, който астрономите наричат М. За разлика от Алфа Центавър, Проксима е невидима за човешкото око – в оптичния диапазон, в който са чувствителни нашите очи, тя е приблизително сто пъти по-слаба, от най-слабите звезди, който хора с отлично зрение могат да видят.

Проектът „Бледа червена точка“ е замислен като съчетание на научно и популяризаторско начинание: на страницата му е отразен в подробности процесът на правене на наука, от идеята, през наблюденията и тяхната обработка, до подготовката и публикуването на научната статия (https://www.eso.org/public/announcements/ann16002/).

Методът: Проектът „Бледа червена точка“, ръководен от Гуем Англада-Ескуде от Университета Куин Мери в Лондон (http://astro.qmul.ac.uk/directory/g.anglada; https://www.researchgate.net/profile/Guillem_Anglada-Escude), използва добре известния метод на радиалните скорости. С помощта точно на този метод през 1995 година швейцарските астрономи Майор и Коло откриха първата екзопланета около звезда от слънчев тип – 51 Пегас б (https://en.wikipedia.org/wiki/51_Pegasi_b).

Методът не изисква да се „види“ директно една планета, достатъчно е да се „вижда“ звездата. Използва се факта, че звездата и нейната планетата се движат по орбити около общ център на масата, който не съвпада с центъра на звездата. Разбира се, орбитата на звездата е много по-малка от орбитата на планетата. При движението по орбитата си звездата се отдалечава или приближава към нас, при което нейният спектър се измества заради ефекта на Доплер. Съвременните астрономически инструменти са в състояние да регистрират това отместване.

В чисто практически аспект методът се заключава в получаване на множество спектри през достатъчно дълъг интервал от време, който трябва да покрие поне веднъж периода на планетата. После се измерва радиалната скорост на звездата от всеки спектър, и по получената крива на скоростите се определят периода и амплитудата на кривата на радиалната скорост, а от там, по закона на Кеплер, се определя отношението между масите на планетата и на звездата.

Анимация, която добре илюстрира метода може да се види тук:

http://images.google.de/imgres?imgurl=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2F3%2F33%2FESO_-_The_Radial_Velocity_Method_%28by%29.jpg&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDoppler_spectroscopy&h=2094&w=2374&tbnid=gLybRk9ZRxgSuM%3A&docid=KwG2Ep3qqhCr6M&ei=QG69V5DvCIfVsAHnna7oDw&tbm=isch&iact=rc&uact=3&dur=1031&page=1&start=0&ndsp=36&ved=0ahUKEwiQj6nc49nOAhWHKiwKHeeOC_0QMwgcKAAwAA&bih=1076&biw=1379

Откритието: около Проксима има планета, с маса 1.4 пъто по-голяма от масата на Земята. Планетата се движи по орбита с период 11.2 дни и радиус 0.05 астрономически единици (около двадесет пъти по-близо до Проксима, отколкото Земята е до Слънцето; една астрономическа единица е равна на радиуса на земната орбита). Планетата се намира близо до външната граница на обитаемата зона на Проксима и получава от своята звезда около 65% от енергията, която Земята получава от Слънцето; не е изненадващо, че новата планета е по-студена от Земята – температура на повърхността ѝ е около 235 градуса по скалата на Келвин, или четиридесет градуса под нулата по скалата на Целзий. По този параметър новата планета по-скоро прилича на Марс.

Но това не е цялата история – много вероятно планетата има период на денонощно въртене, равен на орбиталния период, т.е. тя винаги е обърната към звездата с една и съща страна (подобно на това как Луната винаги е обърната към Земята с една и съща страна). Следователно, на повърхността на планетата има голяма температурна разлика между страните с вечен ден и с вечна нощ.

Друго усложнение идва от възможността планетата да има атмосфера – ако тя е достатъчно плътна, парниковият ефект е в състояние да повиши температурата на повърхността ѝ над точката на замръзване на водата.

Кривата на радиалната скорост намеква – това е най-подходящата дума – за наличието на още един обект в системата на Проксима, защото след премахването на сигнала от новооткритата планета, остава още един сигнал, под формата на бавна промяна на лъчевата скорост на звездата. Ако наличието на това тяло бъде потвърдено, то ще има период, много по-голям от два месеца (колкото е продулжила последната кампания с HARPS).

Анализ:

– Откриването на планета почти в обитаемата зона на най-близката до Слънцето звезда е епохално откритие. Ако съществуването на планетата се потвърди, тя ще е най-близката до нас екзопланета. Тя има и потенциала да бъде най-близката обитаема планета до нас. Това са две „най“, който няма как да бъдат надминати, просто защото няма друга звезда, по-близка до Слънцето от Проксима. Наличието на планети от земен тип около Слунцето и най-близката до него звезда не е вероятно, освен ако планетите от земен тип не са широко разпространени във Вселената.

– В известен смисъл, откриването на планета около Проксима не е изненада, защото е известно, че на всяка звезда от М клас се пада поне по една планета; проблемът е, че част от М звездите имат по няколко планети, а друга част – нямат никакви (или са толкова малки, че все още не сме ги открили). Също така, като правило планетите в системите на М звездите са малки, не по-големи по маса от Нептун (който е 17 пъти по-тежък от Земята и 19 пъти по-малко масивен от Юпитер), така че и ниската маса на планетата не е изненада.

– Още от сега може да се каже, че планетата вероятно наистина съществува, главно защото сигналът, който тя произвежда, може да се проследи в наблюдения, които покриват почти десетилетие. По-рано той е бил приписван на активността на звездата, но този дълъг период, в който сигналът продължава неизменно да се наблюдава, изключва възможността той да е породен от активност на звездата, защото петната, които са причината да се „откриват“ несъществуващи планети обикновено не са стабилни за толкова дълго време. Нещо повече, паралелно с измерването на радиалната скорост, астрономите от проекта „Бледа червена точка“ са проследили и яркостта на Проксима, защото петната биха довели и до наличието на периодичен сигнал и в яркостта на звездата. Както се очаква за такава студена звезда, яркостта на Проксима се мени, но не със същия период като на новооткритата планета, което е допълнителен аргумент, че новата планета наистина съществува.

Въпроси и отговори:

– Има живот на новооткритата планета? – Не е известно.

Традиционно „обитеаема зона“ около една звезда е зоната, в която равновесните температурни на планетите, които я обикалят, ще са такива, че да позволят наличието на течна вода, т.е. ще са между нула и сто градуса Целзий. За Слънцето, което е много по-горещо и дава на планетите си повече енергия, обитаемата зона е по-далече и се намира приблизително между орбитите на Венера и Марс, но Венера е вече твърде гореща, а Марс е твърде студен. За Проксима в тази зона ще се намират планети с периоди между около 4 и 14 дни, но тези граници са размити, защото тяхното положение зависи не само от енергията, която планетите получават от звездата, а и от размера и масата на самите планети, от вида на повърхността и от характера на атмосферата им. В това отношение фактори са: отражателната способност, т.е. доколко повърхността на планетата отразява и доколко поглъща светлината на звездата; дали има парников ефект – ако Марс беше по-голям, на него би могъл да се поддържа парников ефект и съответно да има условия за наличие на течна вода.

Условията за обитаемост не зависят само от наличието на течна вода. Студени звезди от спектрален клас М като Проксима имат активни атмосфери. Това означава, че повърхността им често е покрита с петна, много повече и много по-големи от слънчевите петна. Петната са свързани с активност с чести избухвания и повишено ултравиолетово и рентгеново излъчване. С други думи, повърхността на планетата е бомбандирана със смъртоносна (за нас) радиация. Подобни обстоятелства правят живот – още веднъж подчертавам, живот като нашия – лошо приспособен за тази планета.

– Можем ли да посетим новооткритата планета? – Теоретично, да. Но да не забравяме, че Проксима е толкова далече от нас, че светлината от нея достига до Слънцето за около 4.2 години. Със съвременните химически ракетни технологии изпращането дори на автоматична станция до там ще изисква 70-80 хиляди години. Проектът Старчип (http://breakthroughinitiatives.org/Initiative/3; https://en.wikipedia.org/wiki/StarChip_%28spacecraft%29), който предвижда пътуване със скорост 15-20% от скоростта на светлината, в случай на успех, може да изпрати автомати до Проксима за 20-30 години. На този етап за пилотирана експедиция е трудно да се правят каквито и да е предположения.

– Може ли да видим новооткритата планета? Какво е това откритие без снимка? – За съжаление планетата е прекалено близо до звездата, за да бъде наблюдавана пряко: при радиус на орбитата 0.05 астрономически единици (една астрономическа единица е равна на радиуса на земната орбита, около 150 милиона километра), се вижда от разстояние от 1.3 парсека (около 4.2 светлинни годни) като ъгъл от около 0.04 ъглови секунди (1 ъглова секунда е равна на 1/3600 част от градуса). Най-добрите от съвременните телескопи могат да разграничат два обекта само ако те са на ъглово разстояние по-голямо от около 0.1 ъглова секунда и то ако яркостите им не са прекалено различни. Обаче следващото поколение инструменти, особено космическите коронографи вероятно ще могат. Нещо повече, много е вероятно откриването на тази планета ще ускори построяването на подобни инструменти, така че не е изключено след едно или две десетилетия да разполагаме със снимки на новооткритата планета.

– Каква е връзката на ЕСО (Европейската Южна Обсерватория; http://www.eso.org/public/) с това откритие? – Проектът „Бледа червена точка“ използва два спектрографа на ЕСО, за да мери радиалната скорост на Проксима: UVES (http://www.eso.org/sci/facilities/paranal/instruments/uves.html) и HARPS (http://www.eso.org/sci/facilities/lasilla/instruments/harps.html). Фотометричните наблюдения използват други, по-малки телескопи в Чили.

– Вие имате ли нещо общо с това откритие? – Не, аз не съм свързан по никакъв начин с проекта „Бледа червена точка“ и не сътруднича с нито един от участниците в него по никакви други проекти; служител съм на ЕСО, но работата ми не е свързана с нито един от използваните инструменти. С други думи, нямам конфликт на интереси.

Материали за пресата:

– съобщение за пресата на ЕСО: http://www.eso.org/public/news/eso1629/?lang и в „детска“ версия: http://www.eso.org/public/news/eso1629/kids/?lang

– научна статия с сп. Nature: http://www.eso.org/public/archives/releases/sciencepapers/eso1629/eso1629a.pdf

– видео с обяснения: https://www.eso.org/public/videos/eso1629a/

Любопитно: Проксима често се появява в научно-фантастичните произведения: https://en.wikipedia.org/wiki/Stars_and_planetary_systems_in_fiction#Proxima_Centauri_.28Alpha_Centauri_C.29

Leave a comment

Filed under astronomy, астрономия, наука, science

Астрономия, статия на деня: първият спектър на WISE 0855-0714 – кафявото джудже на което можете да карате ски


Според различни оценки температурата на WISE 0855-0714 (https://en.wikipedia.org/wiki/WISE_0855%E2%88%920714) е в границите 225-260 градуса по скалата на Келвин, което съответствува на -48 до -13 градуса по скалата на Целзий. Това са стойности, типични за Антарктида. Човек може да живее, макар и не особенно комфортно, при подобни температури. За сравнение температурата на Юпитер е около 130 градуса по скалата на Келвин (-143 по скалата на Целзий), което е вече прекалено ниско за нас.

Друга разлика между WISE 0855-0714 и Юпитер е в източника им на енергия – първият обект свети само и изключително за сметка на собствената си гравитация, която го свива и при това той се нагрява; Юпитер черпи по-голямата част от енергията си от Слънцето – той просто преизлъчва това, което получава от вън. И докато Юпитер се намира в нашата собствена Слънчева система, WISE 0855-0714 броди немил-недраг сред нищото, на около 2.3 парсека (около 7.5 светлинни години) от нас. По-близо от него са само тройната система на Алфа Центавър (1.3 парсека, 4.4 светлинни години; https://en.wikipedia.org/wiki/Alpha_Centauri), звездата na Барнард (1.8 парсека, 6.0 светлинни години; https://en.wikipedia.org/wiki/Barnard%27s_Star) и двойнотo кафяво джудже Luh-16 (2.1 парсека, 6.5 светлинни години; https://en.wikipedia.org/wiki/Luhman_16). Вероятността толкова близо до Слънцето да се намират две кафяви джуджета (дори три, ако вземем под внимание, че Luh-16 е двойно) означава, че тяхната пространствена плътност в нашата Галактика е много висока, но те нямат висока светимост и е трудно да бъдат наблюдавани.

Именно ниската светимост беше причина WISE 0855-0714 да остане незабелязан до 2014 година, когато моят колега Кевин Луман (https://en.wikipedia.org/wiki/Kevin_Luhman) го откри с помощта на космическата обсерватория WISE (https://en.wikipedia.org/wiki/Wide-field_Infrared_Survey_Explorer). WISE е малък 40-см телескоп, изстрелян от НАСА през Декември 2009 година. За сравнение космическият телескоп Хъбъл (https://en.wikipedia.org/wiki/Hubble_Space_Telescope) има диаметър 2.4 метра, а неговият наследник Джеймс Уеб ще има 6.5-метрово главно огледало. WISE работи в така наречения среден-инфрачервен диапазон – електромагнитно излъчване с дължиниа на вълната между 3.4 и 22 микрона. Точно в този диапазон излъчват най-голямата част от енергията си студените обекти, подобни на WISE 0855-0714. Но това е само едната от двете причини, откриването му да трябва да чака до влизането в работа на този сравнително нов космически телескоп.

Другата, и бих казал, по-важната причина е в стратегията на наблюденията, който предполагат една и съща област от небето да бъде „гледана“ от телескопа веднъж на всеки (приблизително) шест месеца. Обектите в околността на Слънчевата система се разопознават най-надеждно по техните големи паралакси (https://en.wikipedia.org/wiki/Parallax) на небето. Класическият пример за обяснение на паралакса е да си представите, че пътувате с кола по шосе покрай не особено далечен планински масив, и минавате покрай дърво. Близките дървоета буквало ще „летят“ на фона на планината, а дърветата по самата планина ще си „стоят“ неподвижни, както и самата планина. Шосето от Бургас за Стара Загора, Сините скали край Сливен и кое да е крайпътно дърво вършат работа, ако искате конкретен пример. Именно големия паралакс помогна на Кевин да разпознае и да докаже, че WISE 0855-0714 се намира съвсем близо до нас, разбира се по космически мащаби (статията за откритието в свободен достъп: http://arxiv.org/abs/1404.6501).

Дълго време наблюденията от космоса в средния инфрачервен диапазаон оставаха единствените, по които можеше да се съди за свойствата на WISE 0855-0714. Опитите това кафяво джудже да бъде наблюдавано от Земята след 2-3 часа експозиция, включително и от един мой аспирант, не се увенчаха с успех (http://arxiv.org/abs/1408.5424, http://arxiv.org/abs/1410.5649). Първата детекция от наземен телескоп дойде от телескопа Магелан – кадърът, получен след пет часа интеграция от Джаки Фахърти и нейните колеги показа обект, макар и не статически значим (само 2.7-сигма), но на правилно място. Статията в свободен достъп може да се види на: http://arxiv.org/abs/1408.4671. Новото наблюдение съответствува на модели за свръхстуденти кафяви обекти, които имат водни облаци в атмосферата си. Като се има предвид температурата на повърхността на WISE 0855-0714, може да се поздравим – човчеството вече знае за ски-курорт извън Слънчевата система.

Миналата седмица донесе богат урожай от наблюдения на WISE 0855-0714: инфрачервена фотометрия от телескопа Хъбъл (за която ще пиша друг път; http://arxiv.org/abs/1605.05618) и първия инфрачервен спектър от телескопа Джемини на Хаваите, получен от Ендрю Скемер от Калифорнийския университет в Санта Круз и неговите колеги (http://arxiv.org/abs/1605.04902). Спектърът покрива диапазона между 4.5 и 5.2 микрона и е продукт на 14.4 часа интеграция, получени в рамките на 13 различни нощи през периода Декември 2015 – Януари 2016. Наблюденията са правени само когато влажността на въздуха е особенно ниска; обратното означава висок фон и ниска прозрачност на атмосферата – два фактора, затрудняващи наблюденията в средната инфрачервена област. От наблюдателна гледна точка резултатът е забележително постижение, за което изкренно поздравявам колегите.

Полученият спектър много интересен. За съжаление няма много обекти, с които можем да го сравняваме – другите обекти с температура, подобна на температурата на WISE 0855-0714 са прекалено далече и прекалено слаби за подобни наблюдения. Остава Юпитер, който обаче около 4.5-4.7 микрона показва абсорпция от молекулата на фосфина (PH3), а спектърът на WISE 0855-0714 в този диапазон е плосък. Ако атмосферата на Юпитер беше в състояние на развниовесие, всичкият фосфор в нея щеше да е окислен (под формата на P4O6). Наличието на фосфин доказва, че атмосферата на Юпитер е турбулентна и динамична, поради което в нея се смесват материали от горещата й вътрешна част и от студента й атмосфера. Случаят с WISE 0855-0714 изглежда не е такъв, но по-слабата турбуленция може да не е единствената причина за разликата между този обект и Юпитер.

Друга молекула, която би могла да ни каже нещо повече за атмосферата на WISE 0855-0714 е CH3D – метан, в който единият водороден атом е заменен с деутериев атом. Деутерият се разрушава при по-масивните обекти и наличието му може да бъде доказателство за ниската маса на WISE 0855-0714. За съжаление неговите линии съвпадат с линиите на водата, което усложнява анализа; Скемер и колегите му са се отказали от опити да измерят количеството му.

Новополученият спектър отваря простор за работа на теоретиците, но дава насока и на бъдещите усилия да се изследват наблюдателно подобни свръхстудени обекти – чрез спектроскопия в диапазона 4.5-5 микрона, където те са най-ярки. Спектри на няколко кафяви джуджета от спектрални класове L и T бяка получени с японския космически телескоп AKARI (http://arxiv.org/abs/1210.3828), още няколко са достъпни за най-големите съвременни наземни телескопи; останалите ще трябва да чакат изстрелването на Джеймс Уеб.

Leave a comment

Filed under astronomy, астрономия, космонавтика, наука, science

Астрономия, статия на деня: планетната система TRAPPIST-1


Настоящата статия слага началото на рубрика по популярна астрономия в моя блог.

TRAPPIST е 60-сантиметров белгийско-швейцарски телескоп (TRAnsiting Planets and PlanetesImals Small Telescope; https://en.wikipedia.org/wiki/TRAPPIST), който работи на Ла Сия от 2010 година. Макар да се намира на най-старата наблюдателна база на ЕСО, телескопът е национален проект и за наблюдателно време с него не може да се кандидатства по обичайната система от заявки на ЕСО. За сметка на това консорциумът, който го използва, плаща на ЕСО „наем“ за използване съоръженията на обсерваторията.

TRAPPIST може да е малък, но вече си е осигурил място в историята на астрономията с наблюдения на множество окултации на астероиди и планети-джуджета (например http://adsabs.harvard.edu/abs/2012Natur.491..566O, с участието на вашия покорен слуга) и с откриването на първите пръстени около планета-джудже (Чарикло, http://adsabs.harvard.edu/abs/2014Natur.508…72B).

Преди седмица, на 2.05.2016, група колеги, предимно от Белгия и Швейцария, обявиха за ново откритие с TRAPPIST – система от три планети, обикалящи около студена червена звезда (или дори кафяво джудже – масата на тамошното „слънце“ е на границата между звезди и джуджета) само на 12 парсека от Слънчевата система. Панетите са открити по метода на транзитната фотометрия (https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets#Transit_photometry) – т.е. по намаляването на блясъка на звездата, когато планетата засенчва за наблюдателя част от звездната повърхност. Заради усилията на множество обзори, използващи този метод (https://en.wikipedia.org/wiki/HATNet_Project, https://en.wikipedia.org/wiki/SuperWASP, https://en.wikipedia.org/wiki/COROT, https://en.wikipedia.org/wiki/Kepler_%28spacecraft%29 и други) днес знаем за хиляди планети около други звезди. Някои от тези планети имат размери, сравними със земните. Случаят с трите планети около TRAPPIST-1 е точно такъв – радиусите им за 1.11, 1.05 и 1.16 земни радиуса. Масите им са неизвестни – за да се определят за необходими свръхточни измервания на радиалната скорост на звездата, които вероято ще бъдат получени със следващото поколение свръхстабилни астрономически спектрографи (например ЕСПРЕССО – https://www.eso.org/sci/facilities/develop/instruments/espresso.html).

Защо трите планети около TRAPPIST-1 са интересни:

– размерите им позволяват да са подобни на Земята. Тук подбрах думите си много внимателно, защото сходният радиус не гарантира сходство на физичните условия на повърхността на планетата: Венера има радиус около 0.9 от земния, но освен че се намира по-близо до Слънцето, нейната атмосфера е много по-гъста и там действа значителен парников ефект.

– те са далече от звездата в тяхната система, значително по-далече от така наречените „горещи“ юпитери – планетите от този тип бяха първите открити около „нормални“ слънцеподобни звезди (пример: https://en.wikipedia.org/wiki/51_Pegasi_b), но те не са подходящи места за живот подобен на нашия, защото температурите на повърхността им се измерват в хиляди градуси. Тук е от значение един параметър, наречен irradiance, който на български може да се преведе като облъчване, и описва енергията, която планетата получава от централната звезда. Например Венера получава от Слънцето около 2 пъти повече енергия на единица площ, отколкото Земята, Марс – около 2.3 пъти по-малко, а Юпитер – около 27 пъти по-малко. Но радиусът на орбитата не е единственият важен параметър: светимостта на централната звезда също има знаечние. В планетна система, където вместо звезда с темература около 6000 келвина като Слънцето, имаме много по-студента звезда, планетите трябва да се намират по-близо до нея за да получват същото облъчване. Случаят с планетите около TRAPPIST-1 е точно такъв: радиусите на техните орбити са 0.011, 0.015 и 0.022-0.146 (за сега орбиталните параметри на третата планета не са известн достатъчно точно, затова давам интервал) от радиуса на земната орбита; двете вътрешни планети получават съответно 4.25 и 2.26 пъти повече енергия от тяхната звезда, колкото Земята получава от слънцето. За най-външната планета наблюденията поставят граници между същото количество енергия, което получава Земята и 1/50 от него. С други думи, поне една от трите планети има шанс да бъде нова „бледа синя точка“ (https://www.youtube.com/watch?v=p86BPM1GV8M)

– TRAPPIST-1 е ярка звезда (http://simbad.u-strasbg.fr/simbad/sim-id?Ident=2MASS+J23062928-0502285). Наистина, тя не се вижда с просто око и е доста червена, но за възможностите на най-добрите съвременни (и от близкото бъдеще: https://www.eso.org/sci/facilities/eelt/, https://en.wikipedia.org/wiki/James_Webb_Space_Telescope) астрономически инструменти, особенно в инфрачервената област, тя позволява да се използват за изследването на планетите около нея множество техники, неприложими за болшинството от другите екзопланети. Най-важните, но не единствените от тези техники са транзитната спектроскопия (https://www.eso.org/sci/meetings/2014/exoelt2014/presentations/LopezMorales.pdf) и промяната на времената на транзитите (често съкращавано като TTV; https://en.wikipedia.org/wiki/Transit-timing_variation).

Авторите на откритието са подготвили чудесна страница с информация: http://www.trappist.one/

Системата на TRAPPIST-1, заедно с GJ1214b, GJ436b, GJ1132b и още няколко подобни планети с малки радиуси, открити наскоро от Kepler/K2 (http://kepler.nasa.gov/) ще бъде източник на нови знания за екзопланетите и което е особено интересно, ще ни помогне да разширим представите си за разнообразието на физическите параметри на екзопланетите.

Leave a comment

Filed under astronomy, астрономия, наука, science

Близка среща на слънцето с друга звезда


Преди около 70 хиляди години една звезда е преминала на съвсем близо до Слънцето – само на около 52 хиляди астрономически единици от нашето централно светило. По астрономически мащаби това е нищожно разстояние – звездата е пресякла най-външната част на облака на Оорт в покрайнините на Слънчевата система. Облакът на Оорт често е наричан резервоар на комети, защото от него произлизат дълго периодичните комети, които понякога посещават вътрешната част на Слънчевата система, и разкрасяват нощното небе.
За щастие звездата има малка маса (само около 15% от масата на Слънцето), и голяма скорост спрямо слънчевата система (около 80 км/сек; за сравнение Слънцето се движи с около 16.5 км/сек спрямо близките звезди), така че бързо ни е подминала, пресичайки облака на Оорт почти без да наруши движението на кометите по техните орбити.
Казвам за щастие, защото иначе човечеството сега щеше да бъде изправено пред потенциална орбитална бомбардировка. Имахме късмет.
Звездичката
(WISE J072003.20-084651.2; http://en.wikipedia.org/wiki/WISE_J072003.20-084651.2) беше открита от немския астроном Ралф-Дитер Шолц, от Института по Астрофизика в Потсдам, Германия през 2014 година и в негова чест се нарича „Звездата на Шолц“. Преди няколко месеца заедно с група колеги публикувах статия за нея: http://adsabs.harvard.edu/abs/2015A%26A…574A..64I (свободен достъп: http://arxiv.org/pdf/1410.6792v1), в която определихме характеристиките й.
Сега, заедно с няколко специалисти по звездна динамика и кинематика, публикувахме втора статия:
http://adsabs.harvard.edu/abs/2015ApJ…800L..17M (свободен достъп: http://arxiv.org/pdf/1502.04655v1), в която моделираме траекторията й, използвайки последните измервания на нейното движение в пространството.
Звездичката е двойна, и изключително слаба – даже в момента на най-близкото приближаване до Слънцето тя не се е виждала с просто око. Но звездите от този спектрален клас (М9.5V) понякога проявяват силна активност и в такъв момент само за няколко секунди или минути тя би могла да се види на небето като кратко проблясване.
Съобщение за пресата от Университета в Рочестър, от където е водещия автор на втората статия Ерик Мамеджек, може да се прочете тук: http://www.newswise.com/articles/a-close-call-of-0-8-light-years. Съобщение за пресата от Южноафриканската астрономическа обсерватория, в която са получени част от използвание наблюдения, може да е види тук: http://www.saao.ac.za/press-release/a-neighbourhood-stars-close-shave-with-our-solar-system/.

DSS1Red-red_DSS2IR-green_2MASSJ-blue_1b

Трицветно изображение на област от небето в близост до звездата на Шолц (в центъра), получено чрез комбиниране на кадри, получени през 1955 (червено), 1981 (зелено) и 1999 (синьо) години. Изместването на звездата с времето се вижда (илюстрация Валентин Д. Иванов).

Leave a comment

Filed under astronomy, астрономия, наука, science

Press release: Planet-like object may have spent its youth as hot as a star


WISE J030449.03-270508.3 belongs to a class of cold, extremely low mass objects, known as Y dwarfs. Only about twenty of those are known, and this one shows a peculiar spectrum suggesting that it may be metal-poor and/or older than previously identified Y0 dwarfs. It was discovered and studies by an international group of astronomers, including myself.

A link to the press release: http://www.ras.org.uk/news-and-press/2493-planet-like-object-may-have-spent-its-youth-as-hot-as-a-star

A link to the paper (accepted for publication in MNRAS): http://adsabs.harvard.edu/abs/2014arXiv1408.0284P

A full text pdf is publicly accessible at: http://arxiv.org/abs/1408.0284

Leave a comment

Filed under astronomy, астрономия, наука, science

Time magazine covers our results: finding a sub-stellar mass companion candidate in a nearby binary dwarf system


http://science.time.com/2013/12/17/very-sad-planet-orbits-very-sad-star/

More coverage:
http://www.spacedaily.com/reports/Nearby_failed_stars_may_harbor_planet_999.html

Leave a comment

Filed under astronomy, астрономия, наука, science

Carnegie Observatories Press release: Nearby Failed Stars May Harbor Planet


http://obs.carnegiescience.edu/content/nearby-failed-stars-may-harbor-planet

Pasadena, CA— Astronomers, including Carnegie’s Yuri Beletsky, took precise measurements of the closest pair of failed stars to the Sun, which suggest that the system harbors a third, planetary-mass object.The research is published as a letter to the editor in Astronomy & Astrophysics available online at http://arxiv.org/abs/1312.1303.
Failed stars are known as brown dwarfs and have a mass below 8% of the mass of the Sun—not massive enough to burn hydrogen in their centers. This particular system, Luhman 16AB, was discovered earlier this year and is only 6.6 light-years away.
After the discovery announcement, several teams of astronomers, including the one with Beletsky, used a variety of telescopes to characterize the neighbouring couple.
After two-months of observations and extensive data analysis, Beletsky’s team, led by Henri Boffin of the European Southern Observatory (ESO), found that both objects have a mass between 30 and 50 Jupiter masses. By comparison, the Sun has a mass of about 1,000 Jupiter masses.
The two brown dwarfs are separated by about three times the distance between the Earth and the Sun. Binary brown dwarf systems are gravitationally bound and orbit about each other. Because these two dwarfs have so little mass, they take about 20 years to complete one orbit,” explained Beletsky.
The team used the FORS2 instrument on ESO’s Very Large Telescope at Paranal to image the brown dwarf couple in the best possible conditions, every 5 or 6 days over the period April 14, to June 22, 2013. Because of the instrument enabled the observers to make very precise measurements, the scientists were already able to detect tiny displacements of the two objects in their orbit during only this the two-month period.
The astronomers were able to measure the positions of the two brown dwarfs with ten times better accuracy than before and thereby detect even small perturbations of their orbit.
“We have been able to measure the positions of these two objects with a precision of a few milli-arcseconds,” said Boffin. “That is like a person in Paris being able to measure the position of someone in New York with a precision of 10 centimetres.”
The measurements were so fine that the astronomers were able to see some very small deviations from the expected motion of the two brown dwarfs around each other. The fact that the deviations appear correlated is a strong indication that a companion perturbs the motion of one of the two brown dwarfs. This companion is most likely a planetary-mass object, which has an orbital period between two months and a year.“Further observations are required to confirm the existence of a planet,” concludes Boffin. “But it may well turn out that the closest brown dwarf binary system to the Sun turns out to be a triple system!”
__________________
The team is composed of Henri Boffin, Kora Muzic, Valentin Ivanov, Andrea Mehner, Jean-Philippe Berger, Julien Girard, and Dimitri Mawet (ESO, Chile), Dimitri Pourbaix (Université Libre de Bruxelles, Belgium), Rudy Kurtev (Universidad de Valparaiso, Chile), and Yuri Beletsky (Carnegie Observatories at Las Campanas Observatory, Chile).

Leave a comment

Filed under astronomy, астрономия, наука, science

“ГОДИНА ОТ ПОНЕДЕЛНИЦИ” или приказка за новооткритото двойно кафяво джудже, само на 2 парсека от Слънцето


“Понедельник, понедельник,
понедельник дорогой,
принеси мне понедельник
непогоду и покой…”

Полузабравено стихотворение от забравен поет, четено в далечното детство. Но много подходящо точно за този понеделник, който ми донесе английската версия на “Cosmic Front. Illuminating the Magellanic Clouds” – документален филм на японската телевизионна програма NHK (http://pf.nhk-ep.co.jp/detail/1639), в което участвах почти случайно. Филмчето е интересно преди всичко с външния поглед към нашата работа.

Освен това понедленикът ми донесе и първата ни статия (http://adsabs.harvard.edu/abs/2013arXiv1303.7171K) за двойното кафяво джудже, което моят колега Кевин Луман намери само за 2 парсека от слънцето (http://adsabs.harvard.edu/abs/2013ApJ…767L…1L). Всъщност, нашата статия се появи в петък, когато я изпратихме в Astrophysical Journal Letters, и едновременно с това я пуснахме в един астрономически препринт сървър. А днес на същия сървър има още една статия (http://arxiv.org/abs/1303.7283), която потвърждава част от нашите резултати. Останалите резултати нито ги потвърждава, нито ги опровергава – простo ние имаме различен наблюдателен материал от техния, и можем да правим с него едно допълнително измерване, в частност да мерим лъчевата скорост на двата компонента. За изследването на кафяви джуджета и звезди с ниски маси този обект ще е същото, каквото беше свръхновата 1987А за изследването на свръхнови. А най-интересното е, че: (1) около двата му компонента могат сравнително лесно да се намерят планети – ако го има, разбира се, и (2) съвременните технологии _почти_ позволяват да се измерят директно радиусите на двата компонента, но дори да получим само горни граници, и това ще е успех.

Leave a comment

Filed under астрономия